This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026102 #22 Sep 17 2019 03:50:01 %S A026102 1,6,15,28,55,78,119,152,230,290,372,444,574,645,752,901,1062,1159, %T A026102 1273,1491,1606,1817,1992,2314,2522,2828,2987,3210,3270,3616,4191, %U A026102 4323,4658,5004,5364,5738,6123,6357,6847,7266,7697,7964,8595,8685,9259,9552,10339,10927,11577,11908 %N A026102 a(n) = T(2n-1,n), where T is the array in A026098. %F A026102 a(n) = A026098(A001844(n)). - _Sean A. Irvine_, Sep 16 2019 %t A026102 T[1, 1] = 1; T[2, 1] = 3; T[2, 2] = 2; T[n_, 1] := Prime[n]; %t A026102 T[n_, k_] := T[n, k] = Module[{m, mp, jtt}, For[m = 1, True, m++, mp = m Prime[n+1-k]; jtt = Join[Table[T[i, j], {i, 1, n-1}, {j, 1, i}] // Flatten, Table[T[n, j], {j, 1, k-1}]]; If[FreeQ[jtt, mp], Return[mp]]]]; %t A026102 a[n_] := T[2n-1, n]; (* _Jean-François Alcover_, Sep 05 2019 *) %o A026102 (PARI) lista(nn) = {my(all = []); for (n=1, nn, my(row = getrow(n, all)); if (n % 2, print1(row[(n+1)/2], ", ")); all = Set(concat(all, row)););} \\ uses getrow from A026098; _Michel Marcus_, Sep 04 2019 %Y A026102 Cf. A001844, A026098. %Y A026102 Cf. A033286. [_R. J. Mathar_, Oct 22 2008] %K A026102 nonn %O A026102 1,2 %A A026102 _Clark Kimberling_ %E A026102 Corrected and extended by _Michel Marcus_, Sep 04 2019