A026110 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, s(n) = 4, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-4), where T is the array defined in A026105.
1, 4, 15, 50, 160, 496, 1509, 4530, 13475, 39820, 117117, 343278, 1003665, 2929200, 8537910, 24863724, 72363951, 210532540, 612398025, 1781252110, 5181318054, 15073505216, 43860668800, 127657036000, 371654416575, 1082359229796
Offset: 4
Keywords
Formula
G.f.: z(1-z)M^5, with M the g.f. of the Motzkin numbers (A001006).
Conjecture: -(n+6)*(n-4)*a(n) +(4*n^2-n-51)*a(n-1) +(-2*n^2+11*n+18)*a(n-2) -(4*n-1)*(n-3)*a(n-3) +3*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 23 2013
Comments