A026126 a(n) = number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 5, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-4), where T is the array in A026120.
1, 4, 16, 56, 188, 608, 1922, 5972, 18326, 55704, 168090, 504348, 1506531, 4484208, 13309572, 39414568, 116508361, 343890196, 1013840836, 2986129168, 8788591801, 25850576024, 76000747820, 223361900840, 656270632875, 1927845012756
Offset: 4
Keywords
Formula
G.f.: z^4(1-z)^2M^6, with M the g.f. of the Motzkin numbers (A001006).
Second differences of A005325.
Conjecture: -(n+8)*(n-4)*a(n) +(4*n^2+5*n-73)*a(n-1) +(-2*n^2+13*n+38)*a(n-2) -(4*n+5)*(n-3)*a(n-3) +3*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 10 2013
Extensions
Corrected by Ralf Stephan, Apr 06 2004