This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026135 #17 May 22 2017 02:38:40 %S A026135 1,2,5,14,39,110,312,890,2550,7334,21161,61226,177575,516114,1502867, %T A026135 4383462,12804429,37452870,109682319,321563658,943701141,2772060618, %U A026135 8149661730,23978203662,70600640796,208014215066,613266903927 %N A026135 Number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T defined in A026120. %C A026135 a(n) is the total number of rows of consecutive peaks in all Motzkin (n+2)-paths. For example, with U=upstep, D=downstep, F=flatstep, the path FU(UD)FU(UDUDUD)DD(UD) contains 3 rows of peaks (in parentheses). The 9 Motzkin 4-paths are FFFF, FF(UD), F(UD)F, FUFD, (UD)FF, (UDUD), UFDF, UFFD, U(UD)D, containing a total of 5 rows of peaks and so a(2)=5. - _David Callan_, Aug 16 2006 %H A026135 G. C. Greubel, <a href="/A026135/b026135.txt">Table of n, a(n) for n = 0..1000</a> %F A026135 a(n) = Sum_{k=0..n} binomial(n-1, k-1)*binomial(k+1, floor((k+1)/2)). - _Vladeta Jovovic_, Sep 18 2003 %F A026135 G.f.: ((x-1)^2*((1+x)/(1-3x))^(1/2) + x^2 - 1)/(2*x^2). - _David Callan_, Aug 16 2006 %F A026135 G.f. = (1+z)*(1+z^2)/(1-z) where z=x*A001006(x). [From _R. J. Mathar_, Jul 07 2009] %F A026135 Conjecture: (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n-2)*a(n-2) +3*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jun 23 2013 %t A026135 CoefficientList[Series[((x - 1)^2*((1 + x)/(1 - 3 x))^(1/2) + x^2 - 1)/(2*x^2), {x,0,50}], x] (* _G. C. Greubel_, May 22 2017 *) %o A026135 (PARI) x='x+O('x^50); Vec(((x-1)^2*((1+x)/(1-3x))^(1/2) + x^2 - 1)/(2*x^2)) \\ _G. C. Greubel_, May 22 2017 %Y A026135 First differences are in A025566, second differences in A005773. %Y A026135 Pairwise sums of A025179. %K A026135 nonn %O A026135 0,2 %A A026135 _Clark Kimberling_ %E A026135 More terms from _David Callan_, Aug 16 2006 %E A026135 Typo in a(19) corrected by _R. J. Mathar_, Jul 07 2009