A026225 Numbers of the form 3^i * (3k+1).
1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 30, 31, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 55, 57, 58, 61, 63, 64, 66, 67, 70, 73, 75, 76, 79, 81, 82, 84, 85, 88, 90, 91, 93, 94, 97, 100, 102, 103, 106, 108, 109, 111, 112, 115
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Squarefree Part.
Crossrefs
Programs
-
Mathematica
a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, 160}] p[b_, d_] := Flatten[Position[a[b], d]] p[3, 1] (* A026225 *) p[3, 2] (* A026179 without initial 1 *) (* Clark Kimberling, Oct 19 2016 *)
-
PARI
isok(m) = core(m) % 3 == 1 || core(m) % 9 == 3; \\ Peter Munn, Mar 17 2022
-
Python
from sympy import integer_log def A026225(n): def f(x): return n+x-sum(((x//3**i)-1)//3+1 for i in range(integer_log(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 15 2025
Formula
Extensions
New name from Peter Munn, Mar 17 2022
Comments