A026270 Number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1 = s(n), |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also T(n,n-1), where T is the array in A026268.
1, 2, 6, 15, 39, 102, 270, 721, 1941, 5262, 14354, 39372, 108528, 300482, 835278, 2330334, 6522882, 18313542, 51559506, 145530291, 411738723, 1167450066, 3316925794, 9441771081, 26923831029, 76901809810, 219992462862, 630245628681, 1808029517585
Offset: 2
Keywords
Formula
G.f.: -1 + 4z^2(1-z)(1-z^2)/[1-z+sqrt(1-2z-3z^2)]^2.
Conjecture: (n+3)*a(n) +3*(-n-1)*a(n-1) +(-n-1)*a(n-2) +3*(n-5)*a(n-3)=0. - R. J. Mathar, Jun 23 2013