cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026301 Expansion of g.f. sqrt(V(x)), where V(x) = Sum_{n >= 0} A065409(n)*x^n.

This page as a plain text file.
%I A026301 #17 Sep 26 2019 02:40:25
%S A026301 1,4,64,960,14112,206976,3051520,45340672,679088128,10244538368,
%T A026301 155497791488,2372333207552,36346971717632,558853784207360,
%U A026301 8618409948348416,133250263847796736,2064775104923041792,32056922218818961408,498560128589437599744
%N A026301 Expansion of g.f. sqrt(V(x)), where V(x) = Sum_{n >= 0} A065409(n)*x^n.
%F A026301 a(n) ~ 2^(4*n + 1/2) / (Pi * sqrt(n)). - _Vaclav Kotesovec_, Sep 26 2019
%t A026301 CoefficientList[Series[Sqrt[HypergeometricPFQ[{-1/2, 1/2}, {1}, 32*x - 256*x^2]/(1 - 16*x)], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 26 2019 *)
%Y A026301 Cf. A065409, A046105, A060042.
%K A026301 nonn
%O A026301 0,2
%A A026301 _N. J. A. Sloane_, following a suggestion of _Peter J Larcombe_, Jan 16 2004
%E A026301 More terms from _Sean A. Irvine_, Sep 25 2019