cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046105 a(n) = A026301(n)/2^n.

Original entry on oeis.org

1, 2, 16, 120, 882, 6468, 47680, 354224, 2652688, 20008864, 151853312, 1158365824, 8873772392, 68219456080, 526025997824, 4066475337152, 31505967787522, 244574907064964, 1901855959279776, 14811829930479600, 115514550050260068, 901993060739459720
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Peter J Larcombe, Jan 16 2004

Keywords

Crossrefs

Formula

a(n) ~ 2^(3*n + 1/2) / (Pi * sqrt(n)). - Vaclav Kotesovec, Sep 26 2019

Extensions

More terms from Vaclav Kotesovec, Sep 26 2019

A060042 G.f.: V(x)^(1/4), where V(x) = Sum_{n >= 0} A065409(n)*x^n.

Original entry on oeis.org

1, 2, 30, 420, 5766, 79356, 1105868, 15656200, 225102726, 3280346476, 48334394756, 718513364856, 10756854024476, 161965917024856, 2450288410421976, 37217243114489616, 567231522298906566, 8671114430550556236, 132902927261011018836, 2041798846285571043096
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Peter J Larcombe, Jan 16 2004

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(HypergeometricPFQ[{-1/2, 1/2}, {1}, 32*x - 256*x^2]/(1 - 16*x))^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 26 2019 *)

Formula

a(n) ~ 2^(4*n + 1/4) / (Gamma(1/4) * Pi^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 26 2019

Extensions

More terms from Vaclav Kotesovec, Sep 26 2019
Showing 1-2 of 2 results.