This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026317 #23 Sep 08 2022 08:44:49 %S A026317 0,2,3,5,6,9,12,15,18,19,21,22,24,25,27,28,31,34,37,40,41,43,44,46,47, %T A026317 49,50,53,56,59,62,63,65,66,68,69,71,72,75,78,81,84,85,87,88,90,91,93, %U A026317 94,97,100,103,106,107,109,110,112,113,115 %N A026317 Nonnegative integers k such that |cos(k)| > |sin(k+1)|. %C A026317 The sequences A026317, A327136 and A327137 partition the nonnegative integers. - _Clark Kimberling_, Aug 23 2019 %C A026317 Requirement can be rewritten cos^2(k) > sin^2(k+1) => cos^2(k) > 1-cos^2(k+1) => cos^2(k+1) > 1-cos^2(k) => |cos(k+1)| > |sin(k)|. - _R. J. Mathar_, Sep 03 2019 %C A026317 These are also the numbers k such that sin(2k) < sin(2k+2). %C A026317 Proof (Jean-Paul Allouche, Nov 14 2019): %C A026317 cos^2(n) > sin^2(n+1) ; %C A026317 Formulas for squares Abramowitz-Stegun 4.3.31 and 4.3.32: %C A026317 1/2 + cos(2n)/2 > 1/2 - cos(2n+2) ; %C A026317 cos(2n+2) + cos(2n) > 0 ; %C A026317 Formulas for sums Abramowitz-Stegun 4.3.16 and 4.3.17: %C A026317 cos(2n)*cos(2) - sin(2n)*sin(2) + cos(2n) > 0 ; %C A026317 (1+cos(2))*cos(2n) > sin(2n)*sin 2; %C A026317 Multiply both sides by 1-cos(2) which is >0: %C A026317 (1-cos^2(2))*cos(2n) > (1-cos(2))*sin(2)*sin(2n) ; %C A026317 sin^2(2)*cos(2n) > (1-cos(2))*sin(2)*sin(2n) ; %C A026317 sin(2)*cos(2n) > (1-cos(2))*sin(2n) ; %C A026317 (1-cos(2))*sin(2n) < cos(2n)*sin 2 ; %C A026317 sin(2n) - sin(2n)*cos(2) < cos(2n)*sin(2); %C A026317 sin(2n) < sin(2n)*cos(2)+cos(2n)*sin(2); %C A026317 And backward application of Abramowitz-Stegun 4.3.16 %C A026317 sin(2n) < sin(2n+2) q.e.d. %C A026317 Also nonnegative integers k such that cos(2k+1) > 0. Note that sin(2k+2) - sin(2k) = 2*cos(2k+1)*sin(1). - _Jianing Song_, Nov 16 2019 %t A026317 Select[Range[0,120],Abs[Cos[#]]>Abs[Sin[#+1]]&] (* _Harvey P. Dale_, Mar 04 2013 *) %o A026317 (Magma) [k:k in [0..120]|Abs(Cos(k)) gt Abs(Sin(k+1))]; // _Marius A. Burtea_, Nov 14 2019 %Y A026317 Cf. A026309, A246303, A327138. %K A026317 nonn %O A026317 1,2 %A A026317 _Clark Kimberling_