This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026351 #47 Mar 28 2025 10:22:13 %S A026351 1,2,4,5,7,9,10,12,13,15,17,18,20,22,23,25,26,28,30,31,33,34,36,38,39, %T A026351 41,43,44,46,47,49,51,52,54,56,57,59,60,62,64,65,67,68,70,72,73,75,77, %U A026351 78,80,81,83,85,86,88,89,91,93,94,96,98,99 %N A026351 a(n) = floor(n*phi) + 1, where phi = (1+sqrt(5))/2. %C A026351 a(n)=least k such that s(k)=n, where s=A026350. %C A026351 a(n)=position of n-th 1 in A096270. %C A026351 From _Wolfdieter Lang_, Jun 27 2011: (Start) %C A026351 a(n) = A(n)+1, with Wythoff sequence A(n)=A000201(n), n>=1, and A(0)=0. %C A026351 a(n) = -floor(-n*phi). Recall that floor(-x) = -(floor(x)+1) if x is not integer and -floor(x) otherwise. %C A026351 An exhaustive and disjoint decomposition of the integers is given by the following two Wythoff sequences A' and B: A'(0):=-1 (not 0), A'(-n):=-a(n)=-(A(n)+1), n>=1, A'(n) = A(n), n>=1, and B(-n):=-(B(n)+1)= -A026352(n), n>=1, with B(n)=A001950(n), n>=1, and B(0)=0. %C A026351 (End) %C A026351 Where odd terms in A060142 occur: A060142(a(n)) = A219608(n). - _Reinhard Zumkeller_, Nov 26 2012 %H A026351 Carmine Suriano, <a href="/A026351/b026351.txt">Table of n, a(n) for n = 0..10000</a> %H A026351 Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, <a href="https://arxiv.org/abs/2503.19696">Fibonacci-like partitions and their associated piecewise-defined permutations</a>, arXiv:2503.19696 [math.CO], 2025. See p. 3. %H A026351 Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">Numerical analogues of Aronson's sequence</a>, J. Integer Seqs., Vol. 6 (2003), #03.2.2. %H A026351 Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://arxiv.org/abs/math/0305308">Numerical analogues of Aronson's sequence</a>, arXiv:math/0305308 [math.NT], 2003. %H A026351 J. H. Conway and N. J. A. Sloane, <a href="/A019586/a019586.pdf">Notes on the Para-Fibonacci and related sequences</a> %H A026351 Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, <a href="http://library.msri.org/books/Book70/files/1015.pdf">Geometric analysis of a generalized Wythoff game</a>, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019. %H A026351 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a> %t A026351 Table[Floor[n*GoldenRatio] + 1, {n, 0, 100}] (* _T. D. Noe_, Apr 15 2011 *) %o A026351 (Haskell) %o A026351 import Data.List (findIndices) %o A026351 a026351 n = a026351_list !! n %o A026351 a026351_list = findIndices odd a060142_list %o A026351 -- _Reinhard Zumkeller_, Nov 26 2012 %o A026351 (Python) %o A026351 from math import isqrt %o A026351 def A026351(n): return (n+isqrt(5*n**2)>>1)+1 # _Chai Wah Wu_, Aug 17 2022 %Y A026351 Essentially same as A004956. Cf. A000201. %Y A026351 Complement of A026352. %Y A026351 Cf. A283733 (partial sums). %K A026351 nonn,easy,nice %O A026351 0,2 %A A026351 _N. J. A. Sloane_, _Clark Kimberling_