This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026386 #31 Dec 27 2024 18:29:31 %S A026386 1,1,1,1,2,1,1,4,4,1,1,5,8,5,1,1,7,17,17,7,1,1,8,24,34,24,8,1,1,10,39, %T A026386 75,75,39,10,1,1,11,49,114,150,114,49,11,1,1,13,70,202,339,339,202,70, %U A026386 13,1,1,14,83,272,541,678,541,272,83,14,1,1,16 %N A026386 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for all n >= 0; T(n,k) = T(n-1,k-1) + T(n-1,k) for even n and k = 1..n-1; T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1) for odd n and k = 1 ..n-1. %C A026386 T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n - 2k, where, for u = 1..n, s(i) is odd if i is odd and |s(i)-s(i-1)| <=1. %H A026386 Clark Kimberling, <a href="/A026386/b026386.txt">Rows n = 0..100, flattened</a> %H A026386 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A026386 G.f.: (1 + (1 + y)*x - y*x^2)/(1 - (1 + 3*y + y^2)*x^2). - _Andrew Howroyd_, Dec 27 2024 %e A026386 Rows n=0 through n=7: %e A026386 1 %e A026386 1 ... 1 %e A026386 1 ... 2 ... 1 %e A026386 1 ... 4 ... 4 ... 1 %e A026386 1 ... 5 ... 8 ... 5 ... 1 %e A026386 1 ... 7 ... 17 .. 17 .. 7 ... 1 %e A026386 1 ... 8 ... 24 .. 34 .. 24 .. 8 ... 1 %e A026386 1 ... 10 .. 39 .. 75 .. 75 .. 39 .. 10 ... 1 %p A026386 A026386 := proc(n,k) %p A026386 option remember; %p A026386 if k=0 or k = n then %p A026386 1; %p A026386 elif k <0 or k > n then %p A026386 0 ; %p A026386 elif type(n,'even') then %p A026386 procname(n-1,k-1)+procname(n-1,k) ; %p A026386 else %p A026386 procname(n-1,k-1)+procname(n-1,k)+procname(n-2,k-1) ; %p A026386 end if; %p A026386 end proc: # _R. J. Mathar_, Feb 10 2015 %t A026386 z = 12; t[n_, 0] := 1; t[n_, n_] := 1; t[n_, k_] := t[n, k] = %t A026386 Which[EvenQ[n], t[n - 1, k - 1] + t[n - 1, k], OddQ[n], t[n - 1, k - 1] + %t A026386 t[n - 1, k] + t[n - 2, k - 1]]; u = Table[t[n, k], {n, 0, z}, {k, 0, n}]; %t A026386 TableForm[u] (* A026386 array *) %t A026386 Flatten[u] (* A026386 sequence *) %o A026386 (PARI) T(n)={[Vecrev(p) | p<-Vec((1 + (1 + y)*x - y*x^2)/(1 - (1 + 3*y + y^2)*x^2) + O(x*x^n))]} %o A026386 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Dec 27 2024 %Y A026386 Cf. A007318. %K A026386 nonn,tabl,easy %O A026386 0,5 %A A026386 _Clark Kimberling_ %E A026386 Updated by _Clark Kimberling_, Aug 28 2014 %E A026386 Offset corrected by _R. J. Mathar_, Feb 10 2015