A026394 a(n) = T(n,n-3), where T is the array in A026386.
1, 5, 17, 34, 75, 114, 202, 272, 425, 535, 771, 930, 1267, 1484, 1940, 2224, 2817, 3177, 3925, 4370, 5291, 5830, 6942, 7584, 8905, 9659, 11207, 12082, 13875, 14880, 16936, 18080, 20417, 21709, 24345, 25794, 28747, 30362, 33650, 35440, 39081, 41055, 45067
Offset: 3
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1)
Programs
-
Mathematica
t[n_, 0] := 1; t[n_, n_] := 1; t[n_, k_] := t[n, k] = Which[EvenQ@ n, t[n - 1, k - 1] + t[n - 1, k], OddQ@ n, t[n - 1, k - 1] + t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, n - 3], {n, 3, 45}] (* Michael De Vlieger, Jan 29 2016, after Clark Kimberling at A026386 *)
-
PARI
Vec(x^3*(1+4*x+9*x^2+5*x^3+8*x^4)/((1-x)^4*(1+x)^3) + O(x^100)) \\ Colin Barker, Jan 29 2016
Formula
G.f.: x^3*(1+4*x+9*x^2+5*x^3+8*x^4) / ((1-x)^4*(1+x)^3). - Emeric Deutsch, Feb 18 2004
From Colin Barker, Jan 29 2016: (Start)
a(n) = (18*n^3-9*(-1)^n*n^2-111*n^2+53*(-1)^n*n+243*n-75*(-1)^n-181)/32.
a(n) = (9*n^3-60*n^2+148*n-128)/16 for n even.
a(n) = (9*n^3-51*n^2+95*n-53)/16 for n odd.
(End)