cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026471 a(n) = least positive integer > a(n-1) and not of the form a(i) + a(j) + a(k) for 1 <= i < j < k <= n.

This page as a plain text file.
%I A026471 #22 Mar 07 2025 01:29:37
%S A026471 1,2,3,4,5,13,14,15,25,26,27,37,38,48,49,50,60,61,71,72,73,83,84,94,
%T A026471 95,96,106,107,117,118,119,129,130,140,141,142,152,153,163,164,165,
%U A026471 175,176,186,187,188,198,199,209,210,211,221,222,232,233,234,244,245,255
%N A026471 a(n) = least positive integer > a(n-1) and not of the form a(i) + a(j) + a(k) for 1 <= i < j < k <= n.
%H A026471 Wieb Bosma, Rene Bruin, Robbert Fokkink, Jonathan Grube, Anniek Reuijl, and Thian Tromp, <a href="https://arxiv.org/abs/2503.04122">Using Walnut to solve problems from the OEIS</a>, arXiv:2503.04122 [math.NT], 2025.
%H A026471 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F A026471 {1, 5, 13} union {n congruent 2, 3, 4, 14, 15 mod 23}, proved by Matthew Akeran. - _Ralf Stephan_, Nov 15 2004
%F A026471 G.f.: (9*x^11-7*x^10+9*x^8+7*x^5+x^4+x^3+x^2+x+1)*x/(x^6-x^5-x+1). - _Alois P. Heinz_, Aug 06 2018
%Y A026471 Cf. A003278, A033627, A075122, A075123.
%K A026471 nonn,easy
%O A026471 1,2
%A A026471 _Clark Kimberling_
%E A026471 Edited by _Floor van Lamoen_, Sep 02 2002