This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026475 #23 Mar 07 2025 01:29:44 %S A026475 1,3,4,5,6,7,19,20,21,22,36,37,38,39,53,54,55,69,70,71,72,86,87,88, %T A026475 102,103,104,105,119,120,121,135,136,137,138,152,153,154,168,169,170, %U A026475 171,185,186,187,201,202,203,204,218,219,220,234,235,236,237,251,252,253 %N A026475 a(1)=1, a(2)=3, otherwise a(n) = least positive integer > a(n-1) and not a(i) + a(j) + a(k) for 1 <= i < j < k <= n. %C A026475 Without specifying a(2)=3, a(2) would be 2 and sequence would be A026471. - _Robert Israel_, Aug 27 2018 %H A026475 Robert Israel, <a href="/A026475/b026475.txt">Table of n, a(n) for n = 1..10000</a> %H A026475 Wieb Bosma, Rene Bruin, Robbert Fokkink, Jonathan Grube, Anniek Reuijl, and Thian Tromp, <a href="https://arxiv.org/abs/2503.04122">Using Walnut to solve problems from the OEIS</a>, arXiv:2503.04122 [math.NT], 2025. %H A026475 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1,-1). %F A026475 a(n+7) = a(n) + 33 for n >= 8. - _Robert Israel_, Aug 27 2018 %F A026475 From _Colin Barker_, Oct 10 2019: (Start) %F A026475 G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 + x^5 + 12*x^6 - x^8 + 13*x^10 - 11*x^13 + 13*x^14) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). %F A026475 a(n) = a(n-1) + a(n-7) - a(n-8) for n>15. %F A026475 (End) %p A026475 1, 3, 4, 5, 6, 7, 19, seq(op([20, 21, 22, 36, 37, 38, 39]+k*[33$7]),k=0..10); # _Robert Israel_, Aug 30 2018 %t A026475 LinearRecurrence[{1,0,0,0,0,0,1,-1},{1,3,4,5,6,7,19,20,21,22,36,37,38,39,53},60] (* _Harvey P. Dale_, Jan 04 2022 *) %o A026475 (PARI) Vec(x*(1 + 2*x + x^2 + x^3 + x^4 + x^5 + 12*x^6 - x^8 + 13*x^10 - 11*x^13 + 13*x^14) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^40)) \\ _Colin Barker_, Oct 10 2019 %Y A026475 Cf. A026471. %K A026475 nonn,easy %O A026475 1,2 %A A026475 _Clark Kimberling_ %E A026475 More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000