This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026490 #55 Apr 21 2025 08:37:20 %S A026490 1,1,2,3,2,1,2,1,2,3,2,3,2,3,2,1,2,1,2,3,2,1,2,1,2,3,2,1,2,1,2,3,2,3, %T A026490 2,3,2,1,2,1,2,3,2,3,2,3,2,1,2,1,2,3,2,3,2,3,2,1,2,1,2,3,2,1,2,1,2,3, %U A026490 2,1,2,1,2,3,2,3,2,3,2,1,2,1,2,3,2,1,2,1,2,3 %N A026490 Length of n-th run of identical symbols in A026465. %C A026490 From _Jean-Paul Allouche_ and _Michel Dekking_, Sep 08 2019: (Start) %C A026490 This sequence is a morphic sequence, i.e., the letter to letter image of a fixed point of a morphism. The morphism is defined on a four-letter alphabet: %C A026490 1 -> 322, 2 -> 1212, 3 -> 323232, 4 -> 412. %C A026490 The letter-to-letter map is given by 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 1. The fixed point is the fixed point with prefix 4. %C A026490 How is this obtained? Note that A026465 only has runs of the forms 2, 11 and 222. A026465 itself is the fixed point of the morphism alpha: 1 -> 121, 2 -> 12221. %C A026490 The images of the runs under alpha are alpha(2) = 12221, alpha(11) = 121121, alpha(222) = 122211222112221. Coding the runs with their lengths this induces a morphism on the coded runs: 1 -> 32, 2 -> 1212, 3 -> 323232. %C A026490 Here we use the fact that all three alpha-images have 1 as a prefix and as a suffix. This yields the 2 (coding of 11) at the end of the three images 32, 1212, 323232. The letter 4 is then added to deal with the somewhat strange fact that a(1)=1, a(2)=1. Strange, because the word 11 occurs nowhere else in (a(n)). %C A026490 Actually, one can show in a similar way, using the square of the morphism 1 -> 2, 2 -> 211 instead of the morphism alpha, that (a(n+1)) = 1,2,3,2,1,2,... %C A026490 is a purely morphic sequence, fixed point of the morphism 1 -> 123, 2 -> 212, 3 -> 1232323. %C A026490 One sees from this (by projecting 1, 3 -> 1, 2 -> 2) that (a(n)) has the property a(2n+1) = 2 for all n > 1. Also, by removing the 2's, one sees that the sequence of 1's and 3's is the fixed point of the morphism 1 -> 131, 3 -> 13331, which is the sequence A080426. %C A026490 (End) %C A026490 Because the absolute difference between any pair of adjacent terms is 1 (excluding the first pair of adjacent terms), the length of n-th runs of this sequence is A054977, that is, 2 followed by an infinite sequence of 1's. - _Keith J. Bauer_, Feb 10 2024 %H A026490 Reinhard Zumkeller, <a href="/A026490/b026490.txt">Table of n, a(n) for n = 1..10000</a> %H A026490 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. - _N. J. A. Sloane_, Sep 09 2018. See page 2. %F A026490 a(1)=1, a(2n) = A080426(n) for all n > 0, a(2n+1) = 2 for all n > 1. - _Jean-Paul Allouche_ and _Michel Dekking_, Sep 08 2019 %t A026490 Length /@ Split[Length /@ Split[ThueMorse[Range[0, 200]]]] (* _Vladimir Reshetnikov_, Apr 27 2016 *) %o A026490 (Haskell) %o A026490 import Data.List (group) %o A026490 a026490 n = a026490_list !! (n-1) %o A026490 a026490_list = map length $ group a026465_list %o A026490 -- _Reinhard Zumkeller_, Jul 15 2014 %o A026490 (Python) %o A026490 def A026490(n): %o A026490 if n==1: return 1 %o A026490 if n&1: return 2 %o A026490 def bisection(f,kmin=0,kmax=1): %o A026490 while f(kmax) > kmax: kmax <<= 1 %o A026490 kmin = kmax >> 1 %o A026490 while kmax-kmin > 1: %o A026490 kmid = kmax+kmin>>1 %o A026490 if f(kmid) <= kmid: %o A026490 kmax = kmid %o A026490 else: %o A026490 kmin = kmid %o A026490 return kmax %o A026490 def f(x): %o A026490 c, s = x, bin(x)[2:] %o A026490 l = len(s) %o A026490 for i in range(l&1,l,2): %o A026490 c -= int(s[i])+int('0'+s[:i],2) %o A026490 return c %o A026490 m = n>>1 %o A026490 return bisection(lambda x:f(x)+m,m,m)-bisection(lambda x:f(x)+m-1,m-1,m-1)-1 # _Chai Wah Wu_, Jan 29 2025 %Y A026490 Cf. A010060, A026465, A080426. %Y A026490 Cf. A054977. %K A026490 nonn %O A026490 1,3 %A A026490 _Clark Kimberling_