This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026520 #22 Dec 20 2021 09:43:18 %S A026520 1,1,2,4,8,20,38,104,196,556,1052,3032,5774,16778,32146,93872,180772, %T A026520 529684,1024256,3008864,5837908,17184188,33433996,98577712,192239854, %U A026520 567591142,1109049320,3278348608,6416509142,18986482250 %N A026520 a(n) = T(n,n), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 0. %H A026520 G. C. Greubel, <a href="/A026520/b026520.txt">Table of n, a(n) for n = 0..1000</a> %H A026520 Veronika Irvine, <a href="http://hdl.handle.net/1828/7495">Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns</a>, PhD Dissertation, University of Victoria, 2016. %H A026520 Veronika Irvine, Stephen Melczer, and Frank Ruskey, <a href="https://arxiv.org/abs/1804.08725">Vertically constrained Motzkin-like paths inspired by bobbin lace</a>, arXiv:1804.08725 [math.CO], 2018. %F A026520 a(n) = A026519(n, n). %F A026520 For n>1, a(n) = 2*A026554(n-1). %t A026520 T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *) %t A026520 Table[T[n, n], {n,0,40}] (* _G. C. Greubel_, Dec 19 2021 *) %o A026520 (Sage) %o A026520 @CachedFunction %o A026520 def T(n,k): # T = A026552 %o A026520 if (k==0 or k==2*n): return 1 %o A026520 elif (k==1 or k==2*n-1): return (n+1)//2 %o A026520 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) %o A026520 else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) %o A026520 [T(n,n) for n in (0..40)] # _G. C. Greubel_, Dec 19 2021 %Y A026520 Cf. A026519, A026521, A026522, A026523, A026524, A026525, A026526, A026527, A026528, A026529, A026530, A026531, A026533, A026534, A027262, A027263, A027264, A027265, A027266. %K A026520 nonn %O A026520 0,3 %A A026520 _Clark Kimberling_