This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026528 #10 Dec 21 2021 02:34:11 %S A026528 1,2,8,28,111,436,1763,7176,29521,122182,508595,2126312,8923136, %T A026528 37563930,158563368,670893296,2844444761,12081753410,51400091942, %U A026528 218990735668,934228356445,3990177231742,17060699906541,73017457810032,312785412844736,1340988707637776,5753539499846507 %N A026528 a(n) = T(2*n-1, n-1), T given by A026519. %H A026528 G. C. Greubel, <a href="/A026528/b026528.txt">Table of n, a(n) for n = 1..1000</a> %F A026528 a(n) = A026519(2*n-1, n-1). %F A026528 a(n) = A026552(2*n-1, n-1). %t A026528 T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *) %t A026528 a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n-1, n-1] ]; %t A026528 Table[a[n], {n,40}] (* _G. C. Greubel_, Dec 20 2021 *) %o A026528 (Sage) %o A026528 @CachedFunction %o A026528 def T(n,k): # T = A026519 %o A026528 if (k<0 or k>2*n): return 0 %o A026528 elif (k==0 or k==2*n): return 1 %o A026528 elif (k==1 or k==2*n-1): return (n+1)//2 %o A026528 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) %o A026528 else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) %o A026528 [T(2*n-1,n-1) for n in (1..40)] # _G. C. Greubel_, Dec 20 2021 %Y A026528 Cf. A026519, A026520, A026521, A026522, A026523, A026524, A026525, A026526, A026527, A026529, A026530, A026531, A026533, A026534, A027262, A027263, A027264, A027265, A027266. %Y A026528 Cf. A026552. %K A026528 nonn %O A026528 1,2 %A A026528 _Clark Kimberling_ %E A026528 Terms a(20) onward added by _G. C. Greubel_, Dec 20 2021