cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026532 Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, ...

This page as a plain text file.
%I A026532 #74 Jun 07 2025 23:55:42
%S A026532 1,3,6,18,36,108,216,648,1296,3888,7776,23328,46656,139968,279936,
%T A026532 839808,1679616,5038848,10077696,30233088,60466176,181398528,
%U A026532 362797056,1088391168,2176782336,6530347008,13060694016,39182082048,78364164096,235092492288,470184984576
%N A026532 Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, ...
%C A026532 Preface the series with a 1: (1, 1, 3, 6, 18, 36, ...); then the next term in the series = (1, 1, 3, 6, ...) dot (1, 2, 1, 2, ...). Example: 36 = (1, 1, 3, 6, 18) dot (1, 2, 1, 2, 1) = (1 + 2 + 3 + 12 + 18). - _Gary W. Adamson_, Apr 18 2009
%C A026532 Partial products of A176059. - _Reinhard Zumkeller_, Apr 04 2012
%H A026532 Vincenzo Librandi, <a href="/A026532/b026532.txt">Table of n, a(n) for n = 1..700</a>
%H A026532 Sean A. Irvine, <a href="https://oeis.org/wiki/User:Sean_A._Irvine/Walks_on_Graphs#5_vertices">Walks on Graphs</a>.
%H A026532 José L. Ramírez, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from83to92.pdf">Bi-periodic incomplete Fibonacci sequences</a>, Annales Mathematicae et Informaticae 42 (2013), 83-92. See the 1st column of Table 1 on p. 85.
%H A026532 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,6).
%F A026532 a(n) = T(n, 0) + T(n, 1) + ... + T(n, 2n-2), T given by A026519.
%F A026532 From _Benoit Cloitre_, Nov 14 2003: (Start)
%F A026532 a(n) = (1/2)*(5+(-1)^n)*a(n-1) for n>1, a(1) = 1.
%F A026532 a(n) = (1/4)*(3-(-1)^n)*6^floor(n/2).  (End)
%F A026532 From _Ralf Stephan_, Feb 03 2004: (Start)
%F A026532 G.f.: x*(1+3*x)/(1-6*x^2).
%F A026532 a(n+2) = 6*a(n). (End)
%F A026532 a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011
%F A026532 a(n) = (1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)). - _G. C. Greubel_, Dec 21 2021
%F A026532 Sum_{n>=1} 1/a(n) = 8/5. - _Amiram Eldar_, Feb 13 2023
%t A026532 FoldList[(2 + Boole[EvenQ@ #2]) #1 &, Range@ 28] (* or *)
%t A026532 CoefficientList[Series[x*(1+3x)/(1-6x^2), {x,0,31}], x] (* _Michael De Vlieger_, Aug 02 2017 *)
%t A026532 LinearRecurrence[{0,6},{1,3},30] (* _Harvey P. Dale_, Jul 11 2018 *)
%o A026532 (Magma) [(1/4)*(3-(-1)^n)*6^Floor(n/2) : n in [1..30]]; // _Vincenzo Librandi_, Jun 08 2011
%o A026532 (Haskell)
%o A026532 a026532 n = a026532_list !! (n-1)
%o A026532 a026532_list = scanl (*) 1 $ a176059_list
%o A026532 -- _Reinhard Zumkeller_, Apr 04 2012
%o A026532 (PARI) a(n)=if(n%2,3,1)*6^(n\2) \\ _Charles R Greathouse IV_, Jul 02 2013
%o A026532 (Python)
%o A026532 def a(n): return (3 if n%2 else 1)*6**(n//2)
%o A026532 print([a(n) for n in range(31)]) # _Indranil Ghosh_, Aug 02 2017
%o A026532 (Sage) [(1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) for n in (1..30)] # _G. C. Greubel_, Dec 21 2021
%Y A026532 Cf. A026519, A026520, A026521, A026522, A026523, A026524, A026525, A026526, A026527, A026528, A026529, A026530, A026531, A026533, A026534, A027262, A027263, A027264, A027265, A027266.
%Y A026532 Cf. A026534, A026549, A176059, A208131.
%Y A026532 Cf. A038730, A038792, and A134511 for incomplete Fibonacci sequences, and A324242 for incomplete Lucas sequences.
%K A026532 nonn,easy
%O A026532 1,2
%A A026532 _Clark Kimberling_
%E A026532 New definition from _Ralf Stephan_, Dec 01 2004
%E A026532 Offset changed from 0 to 1 by _Vincenzo Librandi_, Jun 08 2011