This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026532 #74 Jun 07 2025 23:55:42 %S A026532 1,3,6,18,36,108,216,648,1296,3888,7776,23328,46656,139968,279936, %T A026532 839808,1679616,5038848,10077696,30233088,60466176,181398528, %U A026532 362797056,1088391168,2176782336,6530347008,13060694016,39182082048,78364164096,235092492288,470184984576 %N A026532 Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, ... %C A026532 Preface the series with a 1: (1, 1, 3, 6, 18, 36, ...); then the next term in the series = (1, 1, 3, 6, ...) dot (1, 2, 1, 2, ...). Example: 36 = (1, 1, 3, 6, 18) dot (1, 2, 1, 2, 1) = (1 + 2 + 3 + 12 + 18). - _Gary W. Adamson_, Apr 18 2009 %C A026532 Partial products of A176059. - _Reinhard Zumkeller_, Apr 04 2012 %H A026532 Vincenzo Librandi, <a href="/A026532/b026532.txt">Table of n, a(n) for n = 1..700</a> %H A026532 Sean A. Irvine, <a href="https://oeis.org/wiki/User:Sean_A._Irvine/Walks_on_Graphs#5_vertices">Walks on Graphs</a>. %H A026532 José L. Ramírez, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from83to92.pdf">Bi-periodic incomplete Fibonacci sequences</a>, Annales Mathematicae et Informaticae 42 (2013), 83-92. See the 1st column of Table 1 on p. 85. %H A026532 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,6). %F A026532 a(n) = T(n, 0) + T(n, 1) + ... + T(n, 2n-2), T given by A026519. %F A026532 From _Benoit Cloitre_, Nov 14 2003: (Start) %F A026532 a(n) = (1/2)*(5+(-1)^n)*a(n-1) for n>1, a(1) = 1. %F A026532 a(n) = (1/4)*(3-(-1)^n)*6^floor(n/2). (End) %F A026532 From _Ralf Stephan_, Feb 03 2004: (Start) %F A026532 G.f.: x*(1+3*x)/(1-6*x^2). %F A026532 a(n+2) = 6*a(n). (End) %F A026532 a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011 %F A026532 a(n) = (1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)). - _G. C. Greubel_, Dec 21 2021 %F A026532 Sum_{n>=1} 1/a(n) = 8/5. - _Amiram Eldar_, Feb 13 2023 %t A026532 FoldList[(2 + Boole[EvenQ@ #2]) #1 &, Range@ 28] (* or *) %t A026532 CoefficientList[Series[x*(1+3x)/(1-6x^2), {x,0,31}], x] (* _Michael De Vlieger_, Aug 02 2017 *) %t A026532 LinearRecurrence[{0,6},{1,3},30] (* _Harvey P. Dale_, Jul 11 2018 *) %o A026532 (Magma) [(1/4)*(3-(-1)^n)*6^Floor(n/2) : n in [1..30]]; // _Vincenzo Librandi_, Jun 08 2011 %o A026532 (Haskell) %o A026532 a026532 n = a026532_list !! (n-1) %o A026532 a026532_list = scanl (*) 1 $ a176059_list %o A026532 -- _Reinhard Zumkeller_, Apr 04 2012 %o A026532 (PARI) a(n)=if(n%2,3,1)*6^(n\2) \\ _Charles R Greathouse IV_, Jul 02 2013 %o A026532 (Python) %o A026532 def a(n): return (3 if n%2 else 1)*6**(n//2) %o A026532 print([a(n) for n in range(31)]) # _Indranil Ghosh_, Aug 02 2017 %o A026532 (Sage) [(1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) for n in (1..30)] # _G. C. Greubel_, Dec 21 2021 %Y A026532 Cf. A026519, A026520, A026521, A026522, A026523, A026524, A026525, A026526, A026527, A026528, A026529, A026530, A026531, A026533, A026534, A027262, A027263, A027264, A027265, A027266. %Y A026532 Cf. A026534, A026549, A176059, A208131. %Y A026532 Cf. A038730, A038792, and A134511 for incomplete Fibonacci sequences, and A324242 for incomplete Lucas sequences. %K A026532 nonn,easy %O A026532 1,2 %A A026532 _Clark Kimberling_ %E A026532 New definition from _Ralf Stephan_, Dec 01 2004 %E A026532 Offset changed from 0 to 1 by _Vincenzo Librandi_, Jun 08 2011