This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026537 #9 Apr 11 2022 14:57:32 %S A026537 1,0,2,2,8,12,38,66,196,360,1052,1980,5774,11004,32146,61726,180772, %T A026537 348912,1024256,1984608,5837908,11346280,33433996,65143716,192239854, %U A026537 375351288,1109049320,2169299288,6416509142,12569973108 %N A026537 a(n) = T(n,n), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n)=0. %H A026537 G. C. Greubel, <a href="/A026537/b026537.txt">Table of n, a(n) for n = 0..1000</a> %F A026537 a(n) = A026536(n, n). %F A026537 a(n) = 2 * A026521(n-1). %t A026537 T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n, n], {n, 0, 35}] (* _G. C. Greubel_, Apr 10 2022 *) %o A026537 (SageMath) %o A026537 @cached_function %o A026537 def T(n, k): # A026536 %o A026537 if k < 0 or n < 0: return 0 %o A026537 elif k == 0 or k == 2*n: return 1 %o A026537 elif k == 1 or k == 2*n-1: return n//2 %o A026537 elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k) %o A026537 return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) %o A026537 def A026537(n): return T(n,n) %o A026537 [A026537(n) for n in (0..35)] # _G. C. Greubel_, Apr 10 2022 %Y A026537 Cf. A026521, A026536. %K A026537 nonn %O A026537 0,3 %A A026537 _Clark Kimberling_