This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026547 #8 Apr 12 2022 01:35:27 %S A026547 1,1,1,1,5,6,16,19,65,79,251,306,1016,1247,4117,5069,16913,20889, %T A026547 69865,86479,290455,360205,1212905,1506462,5085224,6324176,21389824, %U A026547 26630423,90226449,112439094,381519416,475838291,1616684241,2017827545 %N A026547 a(n) = T(n, floor(n/2)), T given by A026536. %H A026547 G. C. Greubel, <a href="/A026547/b026547.txt">Table of n, a(n) for n = 0..340</a> %F A026547 a(n) = A026536(n, floor(n/2)). %t A026547 T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]]; %t A026547 Table[T[n, Floor[n/2]], {n,0,40}] (* _G. C. Greubel_, Apr 11 2022 *) %o A026547 (SageMath) %o A026547 @CachedFunction %o A026547 def T(n, k): # A026536 %o A026547 if k < 0 or n < 0: return 0 %o A026547 elif k == 0 or k == 2*n: return 1 %o A026547 elif k == 1 or k == 2*n-1: return n//2 %o A026547 elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k) %o A026547 return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) %o A026547 def A026547(n): return T(n, n//2) %o A026547 [A026547(n) for n in (0..40)] # _G. C. Greubel_, Apr 11 2022 %Y A026547 Cf. A026536. %K A026547 nonn %O A026547 0,5 %A A026547 _Clark Kimberling_