cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026549 Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...

This page as a plain text file.
%I A026549 #76 Jun 07 2025 23:55:53
%S A026549 1,2,6,12,36,72,216,432,1296,2592,7776,15552,46656,93312,279936,
%T A026549 559872,1679616,3359232,10077696,20155392,60466176,120932352,
%U A026549 362797056,725594112,2176782336,4353564672,13060694016,26121388032,78364164096,156728328192,470184984576,940369969152
%N A026549 Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...
%C A026549 Appears to be the number of permutations p of {1,2,...,n} such that p(i)+p(i+1)>=n for every i=1,2,...,n-1 (if offset is 1). - _Vladeta Jovovic_, Dec 15 2003
%C A026549 Equals eigensequence of a triangle with 1's in even columns and (1,3,3,3,...) in odd columns. a(5) = 72 = (1, 3, 1, 3, 1, 1) dot (1, 1, 2, 6, 12, 36) = (1 + 3 + 2 + 18 + 12 + 36), where (1, 3, 1, 3, 1, 1) = row 5 of the generating triangle. - _Gary W. Adamson_, Aug 02 2010
%C A026549 Partial products of A010693. - _Reinhard Zumkeller_, Mar 29 2012
%C A026549 Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - _N. J. A. Sloane_, Feb 08 2017
%C A026549 For n >= 2, a(n) is the least k > a(n-1) such that both k and a(n-2) + a(n-1) + k have exactly n prime factors, counted with multiplicity. - _Robert Israel_, Aug 06 2024
%D A026549 Arno Berger and Theodore P. Hill, An Introduction to Benford's Law, Princeton University Press, 2015.
%H A026549 Vincenzo Librandi, <a href="/A026549/b026549.txt">Table of n, a(n) for n = 0..700</a>
%H A026549 Paul Barry, <a href="http://dx.doi.org/10.1155/2014/301394">Embedding structures associated with Riordan arrays and moment matrices</a>, International Journal of Combinatorics, Vol. 2014 (2014), Article ID 301394, 7 pages; <a href="http://arxiv.org/abs/1312.0583">arXiv preprint</a>, arXiv:1312.0583 [math.CO], 2013.
%H A026549 Sean A. Irvine, <a href="https://oeis.org/wiki/User:Sean_A._Irvine/Walks_on_Graphs#5_vertices">Walks on Graphs</a>.
%H A026549 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,6).
%H A026549 <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>.
%F A026549 Equals T(n, 0) + T(n, 1) + ... + T(n, 2n), T given by A026536.
%F A026549 a(n) = 2*A026532(n), for n > 0.
%F A026549 G.f.: (1+2*x)/(1-6*x^2) - _Paul Barry_, Aug 25 2003
%F A026549 a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011
%F A026549 a(n) = (1/2)*(3 - (-1)^n)*6^floor(n/2), or a(n) = 6*a(n-2). - _Vincenzo Librandi_, Jun 08 2011
%F A026549 a(n) = 1/a(-n) if n is even and (2/3)/a(-n) if n is odd for all n in Z. - _Michael Somos_, Apr 09 2022
%F A026549 Sum_{n>=0} 1/a(n) = 9/5. - _Amiram Eldar_, Feb 13 2023
%e A026549 G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 36*x^4 + 72*x^5 + 216*x^6 + ... - _Michael Somos_, Apr 09 2022
%p A026549 seq(seq(2^i*3^j, i=j..j+1),j=0..30); # _Robert Israel_, Aug 06 2024
%t A026549 LinearRecurrence[{0,6},{1,2},30] (* _Harvey P. Dale_, May 29 2016 *)
%o A026549 (Magma) [(1/2)*(3-(-1)^n)*6^Floor(n/2): n in [0..30]]; // _Vincenzo Librandi_, Jun 08 2011
%o A026549 (Haskell)
%o A026549 a026549 n = a026549_list !! n
%o A026549 a026549_list = scanl (*) 1 $ a010693_list
%o A026549 -- _Reinhard Zumkeller_, Mar 29 2012
%o A026549 (SageMath) [(1+(n%2))*6^(n//2) for n in (0..30)] # _G. C. Greubel_, Apr 09 2022
%o A026549 (PARI) {a(n) = 6^(n\2) * (n%2+1)}; /* _Michael Somos_, Apr 09 2022 */
%Y A026549 Cf. A026532, A026536, A026551, A026567.
%Y A026549 Cf. A010693, A208131, A109827.
%K A026549 nonn,easy
%O A026549 0,2
%A A026549 _Clark Kimberling_
%E A026549 New definition from _Ralf Stephan_, Dec 01 2004