This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026559 #10 Dec 18 2021 01:00:12 %S A026559 1,3,12,45,180,721,2940,12069,49935,207691,867900,3640429,15319395, %T A026559 64643580,273431408,1158988141,4921651521,20934115963,89173404140, %U A026559 380355072153,1624282578215,6943928981859,29715239620368,127276313406125,545605497876400,2340694589348376,10048952593607088,43170264470594302 %N A026559 a(n) = T(2*n, n-1), where T is given by A026552. %H A026559 G. C. Greubel, <a href="/A026559/b026559.txt">Table of n, a(n) for n = 1..1000</a> %F A026559 a(n) = A026552(2*n, n-1) %t A026559 T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *) %t A026559 a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n, n-1]]; %t A026559 Table[a[n], {n,40}] (* _G. C. Greubel_, Dec 17 2021 *) %o A026559 (Sage) %o A026559 @CachedFunction %o A026559 def T(n,k): # T = A026552 %o A026559 if (k==0 or k==2*n): return 1 %o A026559 elif (k==1 or k==2*n-1): return (n+2)//2 %o A026559 elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) %o A026559 else: return T(n-1, k) + T(n-1, k-2) %o A026559 [T(2*n,n-1) for n in (1..40)] # _G. C. Greubel_, Dec 17 2021 %Y A026559 Cf. A026552, A026553, A026554, A026555, A026556, A026557, A026558, A026560, A026563, A026566, A026567, A027272, A027273, A027274, A027275, A027276. %K A026559 nonn %O A026559 1,2 %A A026559 _Clark Kimberling_ %E A026559 Terms a(20) onward added by _G. C. Greubel_, Dec 17 2021