This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026565 #24 Sep 08 2022 08:44:49 %S A026565 1,3,9,18,54,108,324,648,1944,3888,11664,23328,69984,139968,419904, %T A026565 839808,2519424,5038848,15116544,30233088,90699264,181398528, %U A026565 544195584,1088391168,3265173504,6530347008,19591041024,39182082048 %N A026565 a(n) = 6*a(n-2), starting with 1, 3, 9. %H A026565 G. C. Greubel, <a href="/A026565/b026565.txt">Table of n, a(n) for n = 0..1000</a> %H A026565 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,6). %F A026565 a(n) = Sum_{j=0..2*n} A026552(n, j). %F A026565 G.f.: (1+3*x+3*x^2)/(1-6*x^2). - _Ralf Stephan_, Feb 03 2004 %F A026565 a(0)=1, a(1)=3; a(n) = 3*a(n-1) if n is even, a(n) = 2*a(n-1) if n is odd. - _Vincenzo Librandi_, Nov 19 2010 %F A026565 a(n) = (1/4)*6^(n/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) - (1/2)*[n=0]. - _G. C. Greubel_, Dec 17 2021 %t A026565 Table[(1/4)*6^(n/2)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)) - (1/2)*Boole[n==0], {n, 0, 35}] (* _G. C. Greubel_, Dec 17 2021 *) %o A026565 (Magma) [1] cat [n le 2 select 3^n else 6*Self(n-2): n in [1..35]]; // _G. C. Greubel_, Dec 17 2021 %o A026565 (Sage) %o A026565 def A026565(n): return ( (3/2)*6^(n/2) if (n%2==0) else 3*6^((n-1)/2) ) - bool(n==0)/2 %o A026565 [A026565(n) for n in (0..30)] # _G. C. Greubel_, Dec 17 2021 %Y A026565 Cf. A026532, A026534, A026551, A026552, A026567. %K A026565 nonn,easy %O A026565 0,2 %A A026565 _Clark Kimberling_ %E A026565 Better name from _Ralf Stephan_, Jul 17 2013