This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026615 #19 Jun 15 2024 02:14:34 %S A026615 1,1,1,1,3,1,1,5,5,1,1,7,10,7,1,1,9,17,17,9,1,1,11,26,34,26,11,1,1,13, %T A026615 37,60,60,37,13,1,1,15,50,97,120,97,50,15,1,1,17,65,147,217,217,147, %U A026615 65,17,1,1,19,82,212,364,434,364,212,82,19,1 %N A026615 Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = 2*n-1 for n >= 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2 and n >= 4. %C A026615 T(n, k) is the number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 0 and for j=0, i >= 0. %H A026615 G. C. Greubel, <a href="/A026615/b026615.txt">Rows n = 0..50 of the triangle, flattened</a> %F A026615 Sum_{k=0..n} T(n, k) = A026622(n) (row sums). %F A026615 From _G. C. Greubel_, Jun 13 2024: (Start) %F A026615 T(n, n-k) = T(n, k). %F A026615 T(n, 0) = A000012(n). %F A026615 T(n, 1) = A005408(n-1), n >= 1. %F A026615 T(n, 2) = A098749(n), n >= 2. %F A026615 T(n, 3) = A145066(n-2) - [n=3], n >= 3. %F A026615 Sum_{k=0..n} (-1)^k*T(n, k) = A176742(n) + [n=2]. %F A026615 Sum_{k=0..n} (-1)^k*T(n-k, k) = b(n-2) + 2*[n=0] + [n=1], where b(n) = (1/6)*(-2*sqrt(3)*sin(Pi*n/3) + 2*sqrt(3)*sin(5*Pi*n/3) + 3*cos(Pi* n/2) + 3*cos(3*Pi*n/2) - 6). %F A026615 Sum_{k=0..n} k*T(n, k) = n*(7*2^(n-3) - 1) + (1/4)*[n=1]. (End) %e A026615 Triangle begins as: %e A026615 1; %e A026615 1, 1; %e A026615 1, 3, 1; %e A026615 1, 5, 5, 1; %e A026615 1, 7, 10, 7, 1; %e A026615 1, 9, 17, 17, 9, 1; %e A026615 1, 11, 26, 34, 26, 11, 1; %e A026615 1, 13, 37, 60, 60, 37, 13, 1; %e A026615 1, 15, 50, 97, 120, 97, 50, 15, 1; %e A026615 1, 17, 65, 147, 217, 217, 147, 65, 17, 1; %e A026615 1, 19, 82, 212, 364, 434, 364, 212, 82, 19, 1; %t A026615 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n-1, k -1] + T[n-1,k]]]; %t A026615 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 13 2024 *) %o A026615 (Magma) %o A026615 function T(n,k) // T = A026615 %o A026615 if k eq 0 or k eq n then return 1; %o A026615 elif k eq 1 or k eq n-1 then return 2*n-1; %o A026615 else return T(n-1, k-1) + T(n-1, k); %o A026615 end if; %o A026615 end function; %o A026615 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 13 2024 %o A026615 (SageMath) %o A026615 def T(n,k): # T = A026615 %o A026615 if k==0 or k==n: return 1 %o A026615 elif k==1 or k==n-1: return 2*n-1 %o A026615 else: return T(n-1, k-1) + T(n-1, k) %o A026615 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jun 13 2024 %Y A026615 Cf. A026616, A026617, A026618, A026619, A026620, A026621, A026623. %Y A026615 Cf. A026624, A026956, A026957, A026958, A026959, A026960. %Y A026615 Cf. A000012, A005408, A098749, A145066, A176742. %Y A026615 Cf. A026622 (row sums), A026625 (diagonal sums). %K A026615 nonn,tabl %O A026615 0,5 %A A026615 _Clark Kimberling_ %E A026615 Offset corrected by _G. C. Greubel_, Jun 13 2024