This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026636 #12 Feb 22 2025 22:30:57 %S A026636 1,1,2,4,6,11,17,30,47,78,125,205,330,536,866,1404,2270,3675,5945, %T A026636 9622,15567,25190,40757,65949,106706,172656,279362,452020,731382, %U A026636 1183403,1914785,3098190,5012975,8111166,13124141,21235309 %N A026636 a(n) = Sum_{k=0..floor(n/2)} A026626(n-k, k). %H A026636 G. C. Greubel, <a href="/A026636/b026636.txt">Table of n, a(n) for n = 0..1000</a> %H A026636 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,1,-1,-1). %F A026636 G.f.: (1 + x^3 - x^4 + x^5 + x^7)/((1-x^4)*(1-x-x^2)). %F A026636 From _G. C. Greubel_, Jun 21 2024: (Start) %F A026636 a(n) = (1/20)*(2*LucasL(n-1) + 70*Fibonacci(n-1) - 15*(1+(-1)^n) - 4*cos((n-1)*Pi/2) - 2*sin((n-1)*Pi/2)) - [n=0] + [n=1]. %F A026636 E.g.f.: (1/10)*(cos(x) - 2*sin(x) - 15*cosh(x) - 10*(1 - x) + 2*exp(x/2)*(17*cosh(sqrt(5)*x/2) - 3*sqrt(5)*sinh(sqrt(5)*x/2))). (End) %t A026636 LinearRecurrence[{1,1,0,1,-1,-1}, {1,1,2,4,6,11,17,30}, 41] (* _G. C. Greubel_, Jun 21 2024 *) %o A026636 (Magma) I:=[2,4,6,11,17,30]; [1,1] cat [n le 6 select I[n] else Self(n-1) +Self(n-2) +Self(n-4) -Self(n-5) -Self(n-6): n in [1..50]]; // _G. C. Greubel_, Jun 21 2024 %o A026636 (SageMath) %o A026636 @CachedFunction %o A026636 def a(n): # a = A026636 %o A026636 if n<8: return (1,1,2,4,6,11,17,30)[n] %o A026636 else: return a(n-1) +a(n-2) +a(n-4) -a(n-5) -a(n-6) %o A026636 [a(n) for n in range(41)] # _G. C. Greubel_, Jun 21 2024 %Y A026636 Cf. A026626, A026627, A026628, A026629, A026630, A026631, A026632. %Y A026636 Cf. A026633, A026634, A026635, A026961, A026962, A026963, A026964. %Y A026636 Cf. A026965. %K A026636 nonn,easy %O A026636 0,3 %A A026636 _Clark Kimberling_