cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026641 Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.

This page as a plain text file.
%I A026641 #173 Mar 21 2024 08:37:04
%S A026641 1,1,4,13,46,166,610,2269,8518,32206,122464,467842,1794196,6903352,
%T A026641 26635774,103020253,399300166,1550554582,6031074184,23493410758,
%U A026641 91638191236,357874310212,1399137067684,5475504511858,21447950506396
%N A026641 Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.
%C A026641 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,2),(1,1). - _Joerg Arndt_, Jun 30 2011
%C A026641 From _Emeric Deutsch_, Jan 25 2004: (Start)
%C A026641 Let B = 1/sqrt(1-4*z) = g.f. for central binomial coeffs (A000984); F = (1-sqrt(1-4*z))/(z*(3-sqrt(1-4*z))) = g.f. for (A000957).
%C A026641 B = 1 + 2*z + 6*z^2 + 20*z^3 + ... gives the number of nodes in all ordered trees with 0,1,2,3,... edges. On p. 288 of the Deutsch-Shapiro paper one finds that z*B*F = z + 2*z^2 + 7*z^3 + 24*z^4 + ... gives the number of nodes of odd outdegree in all ordered trees with 1,2,3,... edges (cf. A014300).
%C A026641 Consequently, B - z*B*F = 2/(3*sqrt(1-4*z)-1+4*z) = 1 + z + 4*z^2 + 13*z^3 + 46*z^4 + ... gives the total number of nodes of even degree in all ordered trees with 0,1,2,3,4,... edges.  (End)
%C A026641 Main diagonal of the following array: first column is filled with 1's, first row is filled alternatively with 1's or 0's: m(i,j) = m(i-1,j) + m(i,j-1): 1 0 1 0 1 ... / 1 1 2 2 3 ... / 1 2 4 6 9 ... / 1 3 7 13 22 ... / 1 4 11 24 46 ... - _Benoit Cloitre_, Aug 05 2002
%C A026641 The Hankel transform of [1,1,4,13,46,166,610,2269,...] is 3^n. - _Philippe Deléham_, Mar 08 2007
%C A026641 Second binomial transform of A127361. - _Philippe Deléham_, Mar 14 2007
%C A026641 Starting with offset 1, generated from iterates of M * [1,1,1,...]; where M = a tridiagonal matrix with (0,2,2,2,...) in the main diagonal and (1,1,1,...) in the super and subdiagonals. - _Gary W. Adamson_, Jan 04 2009
%C A026641 Equals left border of triangle A158815. - _Gary W. Adamson_, Mar 27 2009
%C A026641 Equals the INVERTi transform of A101850: (1, 2, 7, 26, 100, ...). - _Gary W. Adamson_, Jan 10 2012
%C A026641 Diagonal of rational function 1/(1 - (x + x*y + y^2)). - _Gheorghe Coserea_, Aug 06 2018
%C A026641 Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function (-1)^(n+1) for n > 0. Then A(n, n) equals a(n-1) for all n > 0. - _John M. Campbell_, Jan 20 2019
%C A026641 These numbers have the same parity as the Catalan numbers A000108; that is, a(n) is odd if and only if n = 2^k - 1 for some nonnegative integer k. It appears that if a(n) is odd then a(n) == 1 (mod 4). - _Peter Bala_, Feb 07 2024
%C A026641 The number a(n)/(n+1) is the coefficient of x^(n+1) in log(1+(1-sqrt(1-4*x))/2), the generating series of the Sabinin operad. - _F. Chapoton_, Mar 14 2024
%H A026641 Vincenzo Librandi, <a href="/A026641/b026641.txt">Table of n, a(n) for n = 0..1000</a>
%H A026641 Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
%H A026641 Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.
%H A026641 Emeric Deutsch and L. Shapiro, <a href="http://dx.doi.org/10.1016/S0012-365X(01)00121-2">A survey of the Fine numbers</a>, Discrete Math., 241 (2001), 241-265.
%H A026641 Karl Dilcher and Maciej Ulas, <a href="https://arxiv.org/abs/1909.11222">Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1) = 1</a>, arXiv:1909.11222 [math.NT], 2019.
%H A026641 Filippo Disanto, Andrea Frosini and Simone Rinaldi, Renzo Pinzani, <a href="http://www.seams-bull-math.ynu.edu.cn/downloadfile.jsp?filemenu=_200805&amp;filename=The%20Combinatorics%20of%20Convex%20Permutominoes.pdf">The Combinatorics of Convex Permutominoes</a>, Southeast Asian Bulletin of Mathematics (2008) 32: 883-912.
%F A026641 G.f. is logarithmic derivative of the generating function for the Catalan numbers A000108. So this sequence might be called the "log-Catalan" numbers. - _Murray R. Bremner_, Jan 25 2004
%F A026641 a(n) = Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 15 2001
%F A026641 G.f.: 2/(3*sqrt(1-4*z)-1+4*z). - _Emeric Deutsch_, Jul 09 2002
%F A026641 a(n) = (-1)^n*Sum_{k=0..n} (-1)^k*C(n+k, k). - _Benoit Cloitre_, Aug 20 2002
%F A026641 a(n) = Sum_{j=0..floor(n/2)} binomial(2*n-2*j-1, n-1). - _Emeric Deutsch_, Jan 28 2004
%F A026641 From _Paul Barry_, Dec 18 2004: (Start)
%F A026641 A Catalan transform of the Jacobsthal numbers A001045(n+1) under the mapping G(x)-> G(xc(x)), c(x) the g.f. of A000108. The inverse mapping is H(x)->H(x(1-x)).
%F A026641 a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*A001045(k+1). (End)
%F A026641 a(n) = Sum_{k=0..n} binomial(2*n-k, k)*binomial(k, n-k). - _Paul Barry_, Jul 25 2005
%F A026641 a(n) = Sum_{k=0..n-1} A126093(n,k). - _Philippe Deléham_, Mar 08 2007
%F A026641 a(n) = (-1/2)^(n+2) + (2/3)*Sum_{k=0..n} ( (4^n-k)*binomial(2*k,k)*(1/(1-2*k))*(1-(-1/8)^(n-k+1)) ). - _Yalcin Aktar_, Jul 06 2007
%F A026641 a(n) = (-1/2)^(n+2) + (3/4)*Sum_{k=0..n} (-1/2)^(n-k)*binomial(2*k,k). - _Yalcin Aktar_, Jul 06 2007
%F A026641 From _Richard Choulet_, Jan 22 2010: (Start)
%F A026641 a(n) = (3*binomial(2*n-1,n-1) - d(n-1))/2, where d(n) = Sum_{k=floor(n/2)..n} binomial(2*n-k, k)*binomial(k, n-k).
%F A026641 a(n) = a(n-1) + (3/2)*Sum_{k=2..n} (1/(2*k-1))*binomial(2*k,k)*a(n-k).
%F A026641 a(n) = (2/3)*binomial(2*n,n) + (2/9)*((-2)^n/n!)*Sum_{k>=0} ( Product_{p=0..n-1} (k-2*p) /3^k).
%F A026641 a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n-k,n).
%F A026641 a(n) = ( Sum_{k=0..n} (1/2)^(n-k+1)*binomial(n+k,k) )^2*(-1/2)^(n+2). (End)
%F A026641 From _Gary W. Adamson_, Nov 22 2011: (Start)
%F A026641 a(n) is the upper left term of M^n, M = an infinite square production matrix as follows:
%F A026641   1, 3, 0, 0, 0, ...
%F A026641   1, 1, 1, 0, 0, ...
%F A026641   1, 1, 1, 1, 0, ...
%F A026641   1, 1, 1, 1, 1, ...
%F A026641   ...
%F A026641 Also, a(n+1) is the sum of top row terms of M^n; e.g. top row of M^3 = (13, 21, 9, 3), sum = 46 = a(4), a(3) = 13. (End)
%F A026641 D-finite with recurrence: 2n*a(n) + (4-7n)*a(n-1) + 2*(1-2n)*a(n-2) = 0. - _R. J. Mathar_, Dec 17 2011 [The recurrence is proved with the Wilf-Zeilberger (WZ) method applied to Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - _T. Amdeberhan_, Jul 23 2012]
%F A026641 a(n) = A035317(2*n-1,n) for n > 0. - _Reinhard Zumkeller_, Jul 19 2012
%F A026641 a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Feb 12 2014
%F A026641 a(n) = binomial(2*n,n)*hypergeom([1, -n], [-2*n], -1). - _Peter Luschny_, May 22 2014
%F A026641 G.f. is the derivative of the logarithm of the g.f. for A120588. - _Michael Somos_, May 18 2015
%F A026641 a(n) = [x^n] 1/((1 - x^2)*(1 - x)^n). - _Ilya Gutkovskiy_, Oct 25 2017
%F A026641 From _Peter Bala_, Feb 25 2019: (Start)
%F A026641 a(n) = Sum_{k = 0..n} binomial(2*n + 1, n + k + 1)*(-2)^k.
%F A026641 a(n-1) = (1/2)*binomial(2*n,n)*( 1 - 2*(n-1)/(n+1) + 4*(n-1)*(n-2)/((n+1)*(n+2)) - 8*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...) = (1/2)*binomial(2*n,n)*hypergeom([1 - n, 1], [n + 1], 2). (End)
%F A026641 a(0)=1, a(1)=1, and a(n) = (2 - 1/n)*a(n-2) + (7/2 - 2/n)*a(n-1) for n > 1. - _Reginald Robson_, Nov 01 2022
%e A026641 From _Joerg Arndt_, Jul 01 2011: (Start)
%e A026641 The triangle of number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,2),(1,1) begins
%e A026641   1;
%e A026641   1, 1;
%e A026641   1, 2,  4;
%e A026641   1, 3,  7, 13;
%e A026641   1, 4, 11, 24,  46;
%e A026641   1, 5, 16, 40,  86, 166;
%e A026641   1, 6, 22, 62, 148, 314,  610;
%e A026641   1, 7, 29, 91, 239, 553, 1163, 2269;
%e A026641 This sequence is the diagonal. (End)
%e A026641 G.f. = 1 + x + 4*x^2 + 13*x^3 + 46*x^4 + 166*x^5 + 610*x^6 + 2269*x^7 + ...
%p A026641 seq(add((binomial(k+n, n-k)*binomial(n-k, k)),k=0..floor(n/2)),n=0..30);
%p A026641 # From _Richard Choulet_, Jan 22 2010: (Start)
%p A026641 a:= n -> add(binomial(2*n-k, k)*binomial(k, n-k), k=floor(n/2)..n):
%p A026641 a:= n -> `if`(n<2, 1, (3/(2))*binomial(2*n-1, n-1)-(1/2)*a(n-1)):
%p A026641 a:= n -> (-1/2)^(n+2)+(2/3)*add(4^(n-k)*(binomial(2*k, k)*(1/(1-2*k))
%p A026641         *(1-(-1/8)^(n-k+1))), k=0..n):
%p A026641 a:= n -> (-1/2)^(n+2)+(3/4)*add(((-1/2)^(n-k))*(binomial(2*k, k)), k=0..n):
%p A026641 seq(a(n), n=0..30); # (End)
%p A026641 gf := log(1 + (1 - sqrt(1 - 4*x))/2) / x: ser := series(gf, x, 30):
%p A026641 seq((n + 1)*coeff(ser, x, n), n = 0..24);  # _Peter Luschny_, Mar 16 2024
%t A026641 f[n_]:= Sum[ Binomial[n+k, k]*Cos[Pi*(n+k)], {k, 0, n}]; Array[f, 25, 0] (* _Robert G. Wilson v_, Apr 02 2012 *)
%t A026641 CoefficientList[Series[2/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 12 2014 *)
%t A026641 a[ n_]:= SeriesCoefficient[ D[ Log[1+(1-Sqrt[1-4x])/2], x], {x, 0, n}]; (* _Michael Somos_, May 18 2015 *)
%o A026641 (PARI) a(n)=(-1)^n*sum(k=0,n,(-1)^k*binomial(n+k,k))
%o A026641 (PARI) /* same as in A092566 but use */
%o A026641 steps=[[1,0], [0,2], [1,1]]; /* _Joerg Arndt_, Jun 30 2011 */
%o A026641 (GAP) List([0..25],n->(-1)^n*Sum([0..n],k->(-1)^k*Binomial(n+k,k))); # _Muniru A Asiru_, Aug 06 2018
%o A026641 (Magma) [(-1)^n*(&+[(-1)^k*Binomial(n+k, k): k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Feb 12 2019
%o A026641 (Sage) [(-1)^n*sum((-1)^k*binomial(n+k, k) for k in (0..n)) for n in (0..30)] # _G. C. Greubel_, Feb 12 2019
%Y A026641 Cf. A101850, A120588, A158815.
%Y A026641 Cf. A091526 (k=-2), A072547 (k=-1), this sequence (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).
%K A026641 nonn,easy
%O A026641 0,3
%A A026641 _Clark Kimberling_