This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026675 #15 Sep 08 2022 08:44:49 %S A026675 1,6,29,131,575,2488,10681,45641,194467,827045,3512983,14909339, %T A026675 63239487,268127302,1136495965,4816202207,20406887583,86457399359, %U A026675 366263778659,1551535465465,6572224024539,27838835937511,117918419518219 %N A026675 a(n) = T(2n-1,n-2), T given by A026670. Also T(2n-1,n-2) = T(2n,n+2), T given by A026725 and T(2n,n-2), T given by A026736. %C A026675 Column k=5 of triangle A236830. - _Philippe Deléham_, Feb 02 2014 %H A026675 G. C. Greubel, <a href="/A026675/b026675.txt">Table of n, a(n) for n = 2..1000</a> %F A026675 G.f.: (x^2*C(x)^5)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - _Philippe Deléham_, Feb 02 2014 %t A026675 Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^5/(4*x*(8*x^2 -(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* _G. C. Greubel_, Jul 16 2019 *) %o A026675 (PARI) my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ _G. C. Greubel_, Jul 16 2019 %o A026675 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // _G. C. Greubel_, Jul 16 2019 %o A026675 (Sage) a=((1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # _G. C. Greubel_, Jul 16 2019 %Y A026675 Cf. A000108, A026670, A026725, A026736, A236830. %K A026675 nonn %O A026675 2,2 %A A026675 _Clark Kimberling_