cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026692 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1<=k<=n-1, T(n,k)=T(n-1,k-1)+T(n-2,k-1)+T(n-1,k) if k or n-k is of form 2h for h=1,2,...,[ n/4 ], else T(n,k)=T(n-1,k-1)+T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 15, 15, 5, 1, 1, 6, 24, 30, 24, 6, 1, 1, 7, 35, 54, 54, 35, 7, 1, 1, 8, 48, 89, 138, 89, 48, 8, 1, 1, 9, 63, 137, 281, 281, 137, 63, 9, 1, 1, 10, 80, 200, 507, 562, 507, 200, 80, 10, 1, 1, 11, 99, 280, 844
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 4,  8,  4, 1;
  1, 5, 15, 15, 5, 1;
  ...
		

Programs

  • Mathematica
    T[, 0] = 1; T[n, n_] = 1; T[n_, k_] /; EvenQ[k] && 1 <= k/2 <= Floor[n/4] || EvenQ[n-k] && 1 <= (n-k)/2 <= Floor[n/4] := T[n, k] = T[n-1, k-1] + T[n-2, k-1] + T[n-1, k]; T[n_, k_] := T[n, k] = T[n-1, k-1] + T[n-1, k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2017 *)

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i odd and j >= i and for j odd and i >= j.