This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026734 #10 Oct 26 2019 16:12:35 %S A026734 1,3,7,16,34,74,154,330,682,1451,2989,6332,13018,27495,56449,118954, %T A026734 243964,513180,1051612,2208856,4523344,9489604,19422124,40704746, %U A026734 83269990,174366100,356558320,746073604,1525104172,3189119418 %N A026734 a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026725. %H A026734 G. C. Greubel, <a href="/A026734/b026734.txt">Table of n, a(n) for n = 0..1000</a> %p A026734 A026725:= proc(n,k) option remember; %p A026734 if n<0 or k<0 then 0; %p A026734 elif k=0 or k=n then 1; %p A026734 elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ; %p A026734 else procname(n-1,k-1)+procname(n-1,k) ; %p A026734 fi; end proc:seq(add(add(A026725(i,j), j=0..n), i=0..n), n=0..30); # _G. C. Greubel_, Oct 26 2019 %t A026734 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[j, k], {k,0,n}, {j,0,n}], {n,0,30}] (* _G. C. Greubel_, Oct 26 2019 *) %o A026734 (PARI) T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ))); %o A026734 vector(31, n, sum(j=0,n-1, sum(i=0,n-1, T(j,i))) ) \\ _G. C. Greubel_, Oct 26 2019 %o A026734 (Sage) %o A026734 @CachedFunction %o A026734 def T(n, k): %o A026734 if (n<0): return 0 %o A026734 elif (k==0 or k==n): return 1 %o A026734 elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) %o A026734 else: return T(n-1, k-1) + T(n-1, k) %o A026734 [sum( sum( T(j, k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # _G. C. Greubel_, Oct 26 2019 %o A026734 (GAP) %o A026734 T:= function(n,k) %o A026734 if n<0 then return 0; %o A026734 elif k=0 or k=n then return 1; %o A026734 elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); %o A026734 else return T(n-1, k-1) + T(n-1, k); %o A026734 fi; %o A026734 end; %o A026734 List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> T(j,k) )))); # _G. C. Greubel_, Oct 26 2019 %Y A026734 Partial sums of A026732. %K A026734 nonn %O A026734 0,2 %A A026734 _Clark Kimberling_