This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026747 #22 Oct 29 2019 09:04:35 %S A026747 1,1,1,1,3,1,1,4,4,1,1,6,11,5,1,1,7,17,16,6,1,1,9,30,44,22,7,1,1,10, %T A026747 39,74,66,29,8,1,1,12,58,143,184,95,37,9,1,1,13,70,201,327,279,132,46, %U A026747 10,1,1,15,95,329,671,790,411,178,56,11,1,1,16,110,424,1000,1461,1201,589,234,67,12,1 %N A026747 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and 1 <= k <= n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k). %H A026747 G. C. Greubel, <a href="/A026747/b026747.txt">Rows n = 0..100 of triangle, flattened</a> %F A026747 T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, 2h+i)-to-(i+1, 2h+i+1) for i >= 0, h>=0. %e A026747 Triangle begins as: %e A026747 1; %e A026747 1, 1; %e A026747 1, 3, 1; %e A026747 1, 4, 4, 1; %e A026747 1, 6, 11, 5, 1; %e A026747 1, 7, 17, 16, 6, 1; %e A026747 1, 9, 30, 44, 22, 7, 1; %p A026747 A026747 := proc(n,k) %p A026747 if k=0 or k = n then %p A026747 1; %p A026747 elif type(n,'even') and k <= n/2 then %p A026747 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026747 else %p A026747 procname(n-1,k-1)+procname(n-1,k) ; %p A026747 end if ; %p A026747 end proc: # _R. J. Mathar_, Jun 30 2013 %t A026747 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && 1<=k<=n/2, T[n-1, k-1] +T[n-2, k-1] +T[n-1, k], T[n-1, k-1] +T[n-1, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 28 2019 *) %o A026747 (PARI) T(n,k) = if(k==0 || k==n, 1, if(n%2==0 && k<=n/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) )); %o A026747 for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Oct 28 2019 %o A026747 (Sage) %o A026747 def T(n, k): %o A026747 if (k==0 or k==n): return 1 %o A026747 elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026747 else: return T(n-1,k-1) + T(n-1,k) %o A026747 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Oct 28 2019 %o A026747 (GAP) %o A026747 T:= function(n,k) %o A026747 if k=0 or k=n then return 1; %o A026747 elif (n mod 2)=0 and k<Int(n/2)+1 then return T(n-1,k-1)+T(n-2,k-1) +T(n-1,k); %o A026747 else return T(n-1,k-1) + T(n-1,k); %o A026747 fi; %o A026747 end; %o A026747 Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Oct 28 2019 %Y A026747 Cf. A026754 (row sums). %K A026747 nonn,tabl %O A026747 0,5 %A A026747 _Clark Kimberling_ %E A026747 More terms added by _G. C. Greubel_, Oct 28 2019