This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026748 #11 Oct 30 2019 01:11:37 %S A026748 1,3,11,44,184,790,3452,15278,68290,307696,1395696,6367199,29193025, %T A026748 134442102,621609060,2884432810,13428450520,62703991531,293606387095, %U A026748 1378309455352,6485734373020,30586630485443,144544075759391,684395988590939 %N A026748 a(n) = T(2n,n), T given by A026747. %H A026748 G. C. Greubel, <a href="/A026748/b026748.txt">Table of n, a(n) for n = 0..500</a> %p A026748 A026747 := proc(n,k) option remember; %p A026748 if k=0 or k = n then 1; %p A026748 elif type(n,'even') and k <= n/2 then %p A026748 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026748 else %p A026748 procname(n-1,k-1)+procname(n-1,k) ; %p A026748 end if ; %p A026748 end proc: %p A026748 seq(A026747(2*n,n), n=0..30); # _G. C. Greubel_, Oct 29 2019 %t A026748 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n, n], {n,0,30}] (* _G. C. Greubel_, Oct 29 2019 *) %o A026748 (Sage) %o A026748 @CachedFunction %o A026748 def T(n, k): %o A026748 if (k==0 or k==n): return 1 %o A026748 elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026748 else: return T(n-1,k-1) + T(n-1,k) %o A026748 [T(2*n, n) for n in (0..30)] # _G. C. Greubel_, Oct 29 2019 %Y A026748 Cf. A026747, A026749, A026750, A026751, A026752, A026753, A026754, A026755, A026756, A026757. %K A026748 nonn %O A026748 0,2 %A A026748 _Clark Kimberling_