This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026751 #9 Oct 29 2019 21:11:09 %S A026751 1,4,17,74,327,1461,6584,29879,136391,625731,2883357,13338421, %T A026751 61920497,288368511,1346873365,6307694990,29613690966,139352892908, %U A026751 657163401162,3105304341356,14701236957028,69722518168060,331220099616432 %N A026751 a(n) = T(2n-1,n-1), T given by A026747. %H A026751 G. C. Greubel, <a href="/A026751/b026751.txt">Table of n, a(n) for n = 1..500</a> %p A026751 A026747 := proc(n,k) option remember; %p A026751 if k=0 or k = n then 1; %p A026751 elif type(n,'even') and k <= n/2 then %p A026751 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026751 else %p A026751 procname(n-1,k-1)+procname(n-1,k) ; %p A026751 end if ; %p A026751 end proc: %p A026751 seq(A026747(2*n-1,n-1), n=1..30); # _G. C. Greubel_, Oct 29 2019 %t A026751 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n-1, n-1], {n,30}] (* _G. C. Greubel_, Oct 29 2019 *) %o A026751 (Sage) %o A026751 @CachedFunction %o A026751 def T(n, k): %o A026751 if (k==0 or k==n): return 1 %o A026751 elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026751 else: return T(n-1,k-1) + T(n-1,k) %o A026751 [T(2*n-1, n-1) for n in (1..30)] # _G. C. Greubel_, Oct 29 2019 %Y A026751 Cf. A026747, A026748, A026749, A026750, A026752, A026753, A026754, A026755, A026756, A026757. %K A026751 nonn %O A026751 1,2 %A A026751 _Clark Kimberling_