This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026755 #7 Oct 29 2019 21:09:58 %S A026755 1,1,4,5,18,25,84,124,398,612,1901,3012,9126,14800,43968,72658,212417, %T A026755 356544,1028520,1749344,4989477,8583258,24244139,42121079,117973702, %U A026755 206754379,574811040,1015179978,2803969443,4986329826 %N A026755 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026747. %H A026755 G. C. Greubel, <a href="/A026755/b026755.txt">Table of n, a(n) for n = 0..1000</a> %p A026755 A026747 := proc(n,k) option remember; %p A026755 if k=0 or k = n then 1; %p A026755 elif type(n,'even') and k <= n/2 then %p A026755 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026755 else %p A026755 procname(n-1,k-1)+procname(n-1,k) ; %p A026755 end if ; %p A026755 end proc: %p A026755 seq(add(A026747(n,k), k=0..floor(n/2)), n=0..30); # _G. C. Greubel_, Oct 29 2019 %t A026755 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n, k], Floor[n/2]], {n,0,30}] (* _G. C. Greubel_, Oct 29 2019 *) %o A026755 (Sage) %o A026755 @CachedFunction %o A026755 def T(n, k): %o A026755 if (k==0 or k==n): return 1 %o A026755 elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026755 else: return T(n-1,k-1) + T(n-1,k) %o A026755 [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # _G. C. Greubel_, Oct 29 2019 %Y A026755 Cf. A026747, A026748, A026749, A026750, A026751, A026752, A026753, A026754, A026756, A026757. %K A026755 nonn %O A026755 0,3 %A A026755 _Clark Kimberling_