This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026760 #9 Nov 01 2019 03:54:22 %S A026760 1,5,23,104,469,2119,9607,43727,199819,916631,4220267,19497608, %T A026760 90370622,420136173,1958787580,9156770130,42912496696,201579245739, %U A026760 949002525067,4477049676288,21162505063028,100217666089863,475421115762173 %N A026760 a(n) = T(2n, n-1), T given by A026758. %H A026760 G. C. Greubel, <a href="/A026760/b026760.txt">Table of n, a(n) for n = 1..500</a> %p A026760 T:= proc(n,k) option remember; %p A026760 if n<0 then 0; %p A026760 elif k=0 or k = n then 1; %p A026760 elif type(n,'odd') and k <= (n-1)/2 then %p A026760 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026760 else %p A026760 procname(n-1,k-1)+procname(n-1,k) ; %p A026760 end if ; %p A026760 end proc; %p A026760 seq(T(2*n,n-1), n=1..30); # _G. C. Greubel_, Oct 31 2019 %t A026760 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2 n, n-1], {n, 0, 30}] (* _G. C. Greubel_, Oct 31 2019 *) %o A026760 (Sage) %o A026760 @CachedFunction %o A026760 def T(n, k): %o A026760 if (n<0): return 0 %o A026760 elif (k==0 or k==n): return 1 %o A026760 elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026760 else: return T(n-1,k-1) + T(n-1,k) %o A026760 [T(2*n, n-1) for n in (1..30)] # _G. C. Greubel_, Oct 31 2019 %Y A026760 Cf. A026758, A026759, A026761, A026762, A026763, A026764, A026765, A026766, A026767, A026768. %K A026760 nonn %O A026760 1,2 %A A026760 _Clark Kimberling_