This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026761 #10 Nov 01 2019 03:55:11 %S A026761 1,8,48,259,1328,6622,32483,157739,761128,3657815,17534231,83925062, %T A026761 401363296,1918822635,9173429111,43866599736,209853869150, %U A026761 1004463716937,4810867131369,23057388013314,110588897473219,530808778620583 %N A026761 a(n) = T(2n, n-2), T given by A026758. %H A026761 G. C. Greubel, <a href="/A026761/b026761.txt">Table of n, a(n) for n = 2..500</a> %p A026761 T:= proc(n,k) option remember; %p A026761 if n<0 then 0; %p A026761 elif k=0 or k = n then 1; %p A026761 elif type(n,'odd') and k <= (n-1)/2 then %p A026761 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026761 else %p A026761 procname(n-1,k-1)+procname(n-1,k) ; %p A026761 end if ; %p A026761 end proc; %p A026761 seq(T(2*n,n-2), n=2..30); # _G. C. Greubel_, Oct 31 2019 %t A026761 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2 n, n-2], {n, 2, 30}] (* _G. C. Greubel_, Oct 31 2019 *) %o A026761 (Sage) %o A026761 @CachedFunction %o A026761 def T(n, k): %o A026761 if (n<0): return 0 %o A026761 elif (k==0 or k==n): return 1 %o A026761 elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026761 else: return T(n-1,k-1) + T(n-1,k) %o A026761 [T(2*n, n-2) for n in (2..30)] # _G. C. Greubel_, Oct 31 2019 %Y A026761 Cf. A026758, A026759, A026760, A026762, A026763, A026764, A026765, A026766, A026767, A026768. %K A026761 nonn %O A026761 2,2 %A A026761 _Clark Kimberling_