This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026762 #10 Nov 01 2019 03:55:06 %S A026762 1,4,16,66,279,1201,5242,23133,103015,462269,2088146,9487405,43328580, %T A026762 198798447,915950385,4236322720,19661850045,91549502656,427539667095, %U A026762 2002120576312,9399659155395,44234927105888,208631813215116 %N A026762 a(n) = T(2n-1,n-1), T given by A026758. Also T(2n+1,n+1), T given by A026747. %H A026762 G. C. Greubel, <a href="/A026762/b026762.txt">Table of n, a(n) for n = 1..500</a> %p A026762 T:= proc(n,k) option remember; %p A026762 if n<0 then 0; %p A026762 elif k=0 or k = n then 1; %p A026762 elif type(n,'odd') and k <= (n-1)/2 then %p A026762 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026762 else %p A026762 procname(n-1,k-1)+procname(n-1,k) ; %p A026762 end if ; %p A026762 end proc; %p A026762 seq(T(2*n-1,n-1), n=1..30); # _G. C. Greubel_, Oct 31 2019 %t A026762 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2n-1, n-1], {n, 0, 30}] (* _G. C. Greubel_, Oct 31 2019 *) %o A026762 (Sage) %o A026762 @CachedFunction %o A026762 def T(n, k): %o A026762 if (n<0): return 0 %o A026762 elif (k==0 or k==n): return 1 %o A026762 elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026762 else: return T(n-1,k-1) + T(n-1,k) %o A026762 [T(2*n-1, n-1) for n in (1..30)] # _G. C. Greubel_, Oct 31 2019 %Y A026762 Cf. A026747, A026758, A026759, A026760, A026761, A026763, A026764, A026765, A026766, A026767, A026768. %K A026762 nonn %O A026762 1,2 %A A026762 _Clark Kimberling_