This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026766 #8 Nov 01 2019 03:54:53 %S A026766 1,1,3,5,13,24,59,115,273,552,1278,2655,6031,12795,28632,61775,136572, %T A026766 298764,653948,1447225,3141427,7020833,15132512,34106865,73069892, %U A026766 165903082,353576829,807957495,1714132308,3939206346 %N A026766 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026758. %H A026766 G. C. Greubel, <a href="/A026766/b026766.txt">Table of n, a(n) for n = 0..1000</a> %p A026766 T:= proc(n,k) option remember; %p A026766 if n<0 then 0; %p A026766 elif k=0 or k = n then 1; %p A026766 elif type(n,'odd') and k <= (n-1)/2 then %p A026766 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026766 else %p A026766 procname(n-1,k-1)+procname(n-1,k) ; %p A026766 end if ; %p A026766 end proc; %p A026766 seq( add(T(n,k), k=0..floor(n/2)), n=0..30); # _G. C. Greubel_, Oct 31 2019 %t A026766 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[n,k], {k,0,Floor[n/2]}], {n, 0, 30}] (* _G. C. Greubel_, Oct 31 2019 *) %o A026766 (Sage) %o A026766 @CachedFunction %o A026766 def T(n, k): %o A026766 if (n<0): return 0 %o A026766 elif (k==0 or k==n): return 1 %o A026766 elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026766 else: return T(n-1,k-1) + T(n-1,k) %o A026766 [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # _G. C. Greubel_, Oct 31 2019 %Y A026766 Cf. A026758, A026759, A026760, A026761, A026762, A026763, A026764, A026765, A026767, A026768. %K A026766 nonn %O A026766 0,3 %A A026766 _Clark Kimberling_