This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026768 #9 Nov 01 2019 03:54:42 %S A026768 1,1,2,3,6,9,16,29,46,82,145,237,421,737,1228,2171,3788,6388,11253, %T A026768 19617,33344,58597,102141,174571,306294,533976,916309,1605975,2800260, %U A026768 4820020,8441365,14721208,25399974,44458045,77542951 %N A026768 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026758. %H A026768 G. C. Greubel, <a href="/A026768/b026768.txt">Table of n, a(n) for n = 0..1000</a> %p A026768 T:= proc(n,k) option remember; %p A026768 if n<0 then 0; %p A026768 elif k=0 or k = n then 1; %p A026768 elif type(n,'odd') and k <= (n-1)/2 then %p A026768 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026768 else %p A026768 procname(n-1,k-1)+procname(n-1,k) ; %p A026768 end if ; %p A026768 end proc; %p A026768 seq( add(T(n-k,k), k=0..floor(n/2)), n=0..30); # _G. C. Greubel_, Oct 31 2019 %t A026768 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[n-k,k], {k,0,Floor[n/2]}], {n, 0, 30}] (* _G. C. Greubel_, Oct 31 2019 *) %o A026768 (Sage) %o A026768 @CachedFunction %o A026768 def T(n, k): %o A026768 if (n<0): return 0 %o A026768 elif (k==0 or k==n): return 1 %o A026768 elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026768 else: return T(n-1,k-1) + T(n-1,k) %o A026768 [sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # _G. C. Greubel_, Oct 31 2019 %Y A026768 Cf. A026758, A026759, A026760, A026761, A026762, A026763, A026764, A026765, A026766, A026767. %K A026768 nonn %O A026768 0,3 %A A026768 _Clark Kimberling_