This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026777 #7 Nov 01 2019 22:23:28 %S A026777 1,1,3,5,14,26,70,138,362,742,1912,4028,10249,22033,55547,121273, %T A026777 303641,670997,1671233,3729071,9250099,20803231,51437219,116436313, %U A026777 287152067,653567143,1608416195,3677760541,9035150126,20741496354 %N A026777 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026769. %H A026777 G. C. Greubel, <a href="/A026777/b026777.txt">Table of n, a(n) for n = 0..1000</a> %p A026777 T:= proc(n,k) option remember; %p A026777 if n<0 then 0; %p A026777 elif k=0 or k=n then 1; %p A026777 elif n=2 and k=1 then 2; %p A026777 elif k <= (n-1)/2 then %p A026777 procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; %p A026777 else %p A026777 procname(n-1,k-1)+procname(n-1,k) ; %p A026777 end if ; %p A026777 end proc; %p A026777 seq( add(T(n,k), k=0..floor(n/2)), n=0..30); # _G. C. Greubel_, Nov 01 2019 %t A026777 T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n,k], {k,0,Floor[n/2]}], {n,0,30}] (* _G. C. Greubel_, Nov 01 2019 *) %o A026777 (Sage) %o A026777 @CachedFunction %o A026777 def T(n, k): %o A026777 if (k==0 or k==n): return 1 %o A026777 elif (n==2 and k==1): return 2 %o A026777 elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) %o A026777 else: return T(n-1,k-1) + T(n-1,k) %o A026777 [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # _G. C. Greubel_, Nov 01 2019 %Y A026777 Cf. A026769, A026770, A026771, A026772, A026773, A026774, A026775, A026776, A026778, A026779. %K A026777 nonn %O A026777 0,3 %A A026777 _Clark Kimberling_