This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026791 #79 Sep 22 2023 05:17:07 %S A026791 1,1,1,2,1,1,1,1,2,3,1,1,1,1,1,1,2,1,3,2,2,4,1,1,1,1,1,1,1,1,2,1,1,3, %T A026791 1,2,2,1,4,2,3,5,1,1,1,1,1,1,1,1,1,1,2,1,1,1,3,1,1,2,2,1,1,4,1,2,3,1, %U A026791 5,2,2,2,2,4,3,3,6,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,1,1,1,2,2,1,1,1,4,1,1,2,3,1,1,5 %N A026791 Triangle in which n-th row lists juxtaposed lexicographically ordered partitions of n; e.g., the partitions of 3 (1+1+1,1+2,3) appear as 1,1,1,1,2,3 in row 3. %C A026791 Differs from A080576 in a(18): Here, (...,1+3,2+2,4), there (...,2+2,1+3,4). %C A026791 The representation of the partitions (for fixed n) is as (weakly) increasing lists of parts, the order between individual partitions (for the same n) is lexicographic (see example). - _Joerg Arndt_, Sep 03 2013 %C A026791 The equivalent sequence for compositions (ordered partitions) is A228369. - _Omar E. Pol_, Oct 19 2019 %H A026791 Alois P. Heinz, <a href="/A026791/b026791.txt">Rows n = 1..19, flattened</a> %H A026791 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A026791 First six rows are: %e A026791 [[1]]; %e A026791 [[1, 1], [2]]; %e A026791 [[1, 1, 1], [1, 2], [3]]; %e A026791 [[1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], [4]]; %e A026791 [[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3], [5]]; %e A026791 [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 3], [1, 5], [2, 2, 2], [2, 4], [3, 3], [6]]; %e A026791 ... %e A026791 From _Omar E. Pol_, Sep 03 2013: (Start) %e A026791 Illustration of initial terms: %e A026791 ---------------------------------- %e A026791 . Ordered %e A026791 n j Diagram partition j %e A026791 ---------------------------------- %e A026791 . _ %e A026791 1 1 |_| 1; %e A026791 . _ _ %e A026791 2 1 | |_| 1, 1, %e A026791 2 2 |_ _| 2; %e A026791 . _ _ _ %e A026791 3 1 | | |_| 1, 1, 1, %e A026791 3 2 | |_ _| 1, 2, %e A026791 3 3 |_ _ _| 3; %e A026791 . _ _ _ _ %e A026791 4 1 | | | |_| 1, 1, 1, 1, %e A026791 4 2 | | |_ _| 1, 1, 2, %e A026791 4 3 | |_ _ _| 1, 3, %e A026791 4 4 | |_ _| 2, 2, %e A026791 4 5 |_ _ _ _| 4; %e A026791 ... %e A026791 (End) %p A026791 T:= proc(n) local b, ll; %p A026791 b:= proc(n,l) %p A026791 if n=0 then ll:= ll, l[] %p A026791 else seq(b(n-i, [l[], i]), i=`if`(l=[],1,l[-1])..n) %p A026791 fi %p A026791 end; %p A026791 ll:= NULL; b(n, []); ll %p A026791 end: %p A026791 seq(T(n), n=1..8); # _Alois P. Heinz_, Jul 16 2011 %t A026791 T[n0_] := Module[{b, ll}, b[n_, l_] := If[n == 0, ll = Join[ll, l], Table[ b[n - i, Append[l, i]], {i, If[l == {}, 1, l[[-1]]], n}]]; ll = {}; b[n0, {}]; ll]; Table[T[n], {n, 1, 8}] // Flatten (* _Jean-François Alcover_, Aug 05 2015, after _Alois P. Heinz_ *) %t A026791 Table[DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions[n]], x_ /; x == 0, 2], {n, 7}] // Flatten (* _Robert Price_, May 18 2020 *) %o A026791 (Python) %o A026791 t = [[[]]] %o A026791 for n in range(1, 10): %o A026791 p = [] %o A026791 for minp in range(1, n): %o A026791 p += [[minp] + pp for pp in t[n-minp] if min(pp) >= minp] %o A026791 t.append(p + [[n]]) %o A026791 print(t) %o A026791 # _Andrey Zabolotskiy_, Oct 18 2019 %Y A026791 Row lengths are given in A006128. %Y A026791 Partition lengths are in A193173. %Y A026791 Other partition orderings: A026792, A036037, A080577, A125106, A139100, A181087, A181317, A182937, A228100, A240837, A242628. %Y A026791 Row lengths are A000041. %Y A026791 Partition sums are A036042. %Y A026791 Partition minima are A196931. %Y A026791 Partition maxima are A194546. %Y A026791 The reflected version is A211992. %Y A026791 The length-sensitive version (sum/length/lex) is A036036. %Y A026791 The colexicographic version (sum/colex) is A080576. %Y A026791 The version for non-reversed partitions is A193073. %Y A026791 Compositions under the same ordering (sum/lex) are A228369. %Y A026791 The reverse-lexicographic version (sum/revlex) is A228531. %Y A026791 The Heinz numbers of these partitions are A334437. %Y A026791 Cf. A049085, A103921, A112798, A115623, A129129, A331581, A334435, A334439, A334442. %K A026791 nonn,tabf %O A026791 1,4 %A A026791 _Clark Kimberling_