This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026792 #58 Aug 06 2024 00:02:51 %S A026792 1,2,1,1,3,2,1,1,1,1,4,2,2,3,1,2,1,1,1,1,1,1,5,3,2,4,1,2,2,1,3,1,1,2, %T A026792 1,1,1,1,1,1,1,1,6,3,3,4,2,2,2,2,5,1,3,2,1,4,1,1,2,2,1,1,3,1,1,1,2,1, %U A026792 1,1,1,1,1,1,1,1,1,7,4,3,5,2,3,2,2,6,1,3,3,1,4,2,1,2,2,2,1,5,1,1,3,2,1,1,4,1,1,1,2,2,1 %N A026792 List of juxtaposed reverse-lexicographically ordered partitions of the positive integers. %C A026792 The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is (list-)reversed lexicographic; see examples. [_Joerg Arndt_, Sep 03 2013] %C A026792 Written as a triangle; row n has length A006128(n); row sums give A066186. Also written as an irregular tetrahedron in which T(n,j,k) is the k-th largest part of the j-th partition of n; the sum of column k in the slice n is A181187(n,k); right border of the slices gives A182715. - _Omar E. Pol_, Mar 25 2012 %C A026792 The equivalent sequence for compositions (ordered partitions) is A228351. - _Omar E. Pol_, Sep 03 2013 %C A026792 This is the reverse-colexicographic order of integer partitions, or the reflected reverse-lexicographic order of reversed integer partitions. It is not reverse-lexicographic order (A080577), wherein we would have (3,1) before (2,2). - _Gus Wiseman_, May 12 2020 %H A026792 Robert Price, <a href="/A026792/b026792.txt">Table of n, a(n) for n = 1..3615, 15 rows.</a> %H A026792 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A026792 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A026792 E.g. the partitions of 3 (3,2+1,1+1+1) appear as the string 3,2,1,1,1,1. %e A026792 So the list begins: %e A026792 1 %e A026792 2, 1, 1, %e A026792 3, 2, 1, 1, 1, 1, %e A026792 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, %e A026792 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, %e A026792 ... %e A026792 From _Omar E. Pol_, Sep 03 2013: (Start) %e A026792 Illustration of initial terms: %e A026792 --------------------------------- %e A026792 n j Diagram Partition %e A026792 --------------------------------- %e A026792 . _ %e A026792 1 1 |_| 1; %e A026792 . _ _ %e A026792 2 1 |_ | 2, %e A026792 2 2 |_|_| 1, 1; %e A026792 . _ _ _ %e A026792 3 1 |_ _ | 3, %e A026792 3 2 |_ | | 2, 1, %e A026792 3 3 |_|_|_| 1, 1, 1; %e A026792 . _ _ _ _ %e A026792 4 1 |_ _ | 4, %e A026792 4 2 |_ _|_ | 2, 2, %e A026792 4 3 |_ _ | | 3, 1, %e A026792 4 4 |_ | | | 2, 1, 1, %e A026792 4 5 |_|_|_|_| 1, 1, 1, 1; %e A026792 ... %e A026792 (End) %e A026792 From _Gus Wiseman_, May 12 2020: (Start) %e A026792 This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. Showing these partitions as their Heinz numbers gives A334436. %e A026792 0 %e A026792 (1) %e A026792 (2)(11) %e A026792 (3)(21)(111) %e A026792 (4)(22)(31)(211)(1111) %e A026792 (5)(32)(41)(221)(311)(2111)(11111) %e A026792 (6)(33)(42)(222)(51)(321)(411)(2211)(3111)(21111)(111111) %e A026792 (End) %t A026792 revcolex[f_,c_]:=OrderedQ[PadRight[{Reverse[c],Reverse[f]}]]; %t A026792 Join@@Table[Sort[IntegerPartitions[n],revcolex],{n,0,8}] (* reverse-colexicographic order, _Gus Wiseman_, May 10 2020 *) %t A026792 - or - %t A026792 revlex[f_,c_]:=OrderedQ[PadRight[{c,f}]]; %t A026792 Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n],revlex],{n,0,8}] (* reflected reverse-lexicographic order, _Gus Wiseman_, May 12 2020 *) %Y A026792 Cf. A026791, A228531. %Y A026792 The reflected version for reversed partitions is A080577. %Y A026792 The partition minima appear to be A182715. %Y A026792 The graded reversed version is A211992. %Y A026792 The version for compositions is A228351. %Y A026792 The Heinz numbers of these partitions are A334436. %Y A026792 Cf. A000041, A036036, A036037, A193073, A296150, A331581, A334301, A334435, A334437, A334439. %K A026792 nonn,tabf %O A026792 1,2 %A A026792 _Clark Kimberling_ %E A026792 Terms 81st, 83rd and 84th corrected by _Omar E. Pol_, Aug 16 2009