This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026803 #24 Sep 08 2022 08:44:49 %S A026803 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4, %T A026803 4,5,5,6,6,8,8,10,11,13,14,17,18,21,23,27,29,34,37,43,47,54,59,68,74, %U A026803 85,93,106,116,132,145,164,180,203,223,252,276,310,341,382,420,470,516,576,633,706,775,863 %N A026803 Number of partitions of n in which the least part is 10. %C A026803 In general, if g>=1 and g.f. = x^g * Product_{m>=g} 1/(1-x^m), then a(n,g) ~ Pi^(g-1) * (g-1)! * exp(Pi*sqrt(2*n/3)) / (2^((g+3)/2) * 3^(g/2) * n^((g+1)/2)) ~ p(n) * Pi^(g-1) * (g-1)! / (6*n)^((g-1)/2), where p(n) is the partition function A000041(n). - _Vaclav Kotesovec_, Jun 02 2018 %H A026803 G. C. Greubel, <a href="/A026803/b026803.txt">Table of n, a(n) for n = 1..1000</a> %H A026803 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_eq_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g</a> %F A026803 G.f.: x^10 * Product_{m>=10} 1/(1-x^m). %F A026803 a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*sqrt(2)*Pi^9 / (3*n^(11/2)). - _Vaclav Kotesovec_, Jun 02 2018 %F A026803 G.f.: Sum_{k>=1} x^(10*k) / Product_{j=1..k-1} (1 - x^j). - _Ilya Gutkovskiy_, Nov 25 2020 %p A026803 seq(coeff(series(x^10/mul(1-x^(m+10), m = 0..85), x, n+1), x, n), n = 1..80); # _G. C. Greubel_, Nov 03 2019 %t A026803 Rest@CoefficientList[Series[x^10/QPochhammer[x^10, x], {x,0,80}], x] (* _G. C. Greubel_, Nov 03 2019 *) %o A026803 (PARI) my(x='x+O('x^80)); concat(vector(9), Vec(x^10/prod(m=0,85, 1-x^(m+10)))) \\ _G. C. Greubel_, Nov 03 2019 %o A026803 (Magma) R<x>:=PowerSeriesRing(Integers(), 80); [0,0,0,0,0,0,0,0,0] cat Coefficients(R!( x^10/(&*[1-x^(m+10): m in [0..85]]) )); // _G. C. Greubel_, Nov 03 2019 %o A026803 (Sage) %o A026803 def A026803_list(prec): %o A026803 P.<x> = PowerSeriesRing(ZZ, prec) %o A026803 return P( x^10/product((1-x^(m+10)) for m in (0..85)) ).list() %o A026803 a=A026803_list(71); a[1:] # _G. C. Greubel_, Nov 03 2019 %Y A026803 Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9). %Y A026803 Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). %K A026803 nonn,easy %O A026803 1,30 %A A026803 _Clark Kimberling_ %E A026803 More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001