This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026821 #12 Aug 21 2015 13:29:38 %S A026821 1,0,1,1,0,1,1,0,0,1,1,1,0,0,1,2,1,0,0,0,1,2,1,1,0,0,0,1,3,1,1,0,0,0, %T A026821 0,1,3,2,1,1,0,0,0,0,1,5,2,1,1,0,0,0,0,0,1,5,3,1,1,1,0,0,0,0,0,1,7,3, %U A026821 2,1,1,0,0,0,0,0,0,1,8,4,2,1,1,1,0,0,0,0,0,0 %N A026821 Triangular array T read by rows: T(n,k) = number of partitions of n into distinct parts, the least being k, for k=1,2,...,n. %C A026821 T(n,1) = A025147(n-1). Sum(k*T(n,k),k=1..n) = A092265(n). - _Emeric Deutsch_, Feb 24 2006 %F A026821 T(n, k) = T(n-k, k+1) + ... + T(n-k, n-k) for 1<=k<=m and T(n, k)=0 for m+1<=k<=n-1, where m=[ (n-1)/2 ]; T(n, n)=1 for n >= 1. %F A026821 G.f.: sum(t^j*x^j*product(1+x^i,i=j+1..infinity),j=1..infinity). - _Emeric Deutsch_, Feb 24 2006 %e A026821 T(11,2)=3 because we have [9,2],[6,3,2] and [5,4,2]. %e A026821 Triangle starts: %e A026821 1; %e A026821 0,1; %e A026821 1,0,1; %e A026821 1,0,0,1; %e A026821 1,1,0,0,1; %p A026821 g:=sum(t^j*x^j*product(1+x^i,i=j+1..50),j=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: seq(seq(coeff(P[n],t^j),j=1..n),n=1..14); # _Emeric Deutsch_, Feb 24 2006 %Y A026821 Cf. A025147, A092265. %K A026821 nonn,tabl %O A026821 1,16 %A A026821 _Clark Kimberling_