cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026846 a(n) = T(2n+1,n+4), T given by A026725.

This page as a plain text file.
%I A026846 #19 Sep 08 2022 08:44:49
%S A026846 1,9,56,300,1487,7041,32381,146017,649395,2859231,12494914,54291912,
%T A026846 234860677,1012433965,4352210327,18666918033,79916230409,341615895659,
%U A026846 1458457275715,6220016154525,26503542364381,112847001503099,480173686483581
%N A026846 a(n) = T(2n+1,n+4), T given by A026725.
%C A026846 This is probably the same as A026842 because A026725 is built in a left-right symmetric Pascal-tree-summation fashion. - _R. J. Mathar_, May 28 2008
%C A026846 Column k=8 of triangle A236830. - _Philippe Deléham_, Feb 02 2014
%H A026846 G. C. Greubel, <a href="/A026846/b026846.txt">Table of n, a(n) for n = 3..1000</a>
%F A026846 a(n) = A026842(n) = A026849(n). - _Philippe Deléham_, Feb 02 2014
%F A026846 G.f.: (x^3*C(x)^8)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - _Philippe Deléham_, Feb 02 2014
%t A026846 Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,30}], x], 3] (* _G. C. Greubel_, Jul 17 2019 *)
%o A026846 (PARI) my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ _G. C. Greubel_, Jul 17 2019
%o A026846 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // _G. C. Greubel_, Jul 17 2019
%o A026846 (Sage) a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # _G. C. Greubel_, Jul 17 2019
%Y A026846 Cf. A236830, A026842,  A026846.
%K A026846 nonn
%O A026846 3,2
%A A026846 _Clark Kimberling_