This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026855 #27 Nov 22 2024 07:16:33 %S A026855 1,5,21,85,342,1380,5598,22836,93640,385734,1595232,6619374,27545269, %T A026855 114901685,480282369,2011058681,8433331523,35410037683,148842787215, %U A026855 626234799703,2636930617597,11111302351505,46848507630321,197631791675365 %N A026855 a(n) = T(2n+1,n+2), T given by A026736. %H A026855 Robert Israel, <a href="/A026855/b026855.txt">Table of n, a(n) for n = 1..1580</a> %F A026855 G.f.: (x*C(x)^4)/(1 - x/sqrt(1 - 4*x)) where C(x) is the g.f. for Catalan numbers A000108. - _David Callan_, Jan 16 2016 %F A026855 a(n) ~ (3 - sqrt(5))^4 * (2 + sqrt(5))^(n+2) / (16*sqrt(5)). - _Vaclav Kotesovec_, Jul 18 2019 %F A026855 D-finite with recurrence -2*(n+3)*(26*n-53)*a(n) +(627*n^2-491*n-2440)*a(n-1) +2*(-1234*n^2+3198*n+337)*a(n-2) +(2957*n^2-13637*n+15888)*a(n-3) +2*(211*n-368)*(2*n-5)*a(n-4)=0. - _R. J. Mathar_, Nov 22 2024 %p A026855 gf := ((-2*x^3+12*x^2-7*x+1)*sqrt(1-4*x)+16*x^3-24*x^2+9*x-1)/(2*(x^2+4*x-1)*x^3): %p A026855 S:= series(gf,x,40): %p A026855 seq(coeff(S,x,j),j=1..30); # _Robert Israel_, Jan 17 2016 %t A026855 CoefficientList[Series[(1-Sqrt[1-4x])^4/(16*x^4*(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* _David Callan_, Jan 16 2016 *) %o A026855 (PARI) my(x='x+O('x^30)); Vec( sqrt(1-4*x)*(1-sqrt(1-4*x))^4/(16*x^3*(sqrt(1-4*x) -x)) ) \\ _G. C. Greubel_, Jul 17 2019 %o A026855 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^4/(16*x^3*(Sqrt(1-4*x) -x)) )); // _G. C. Greubel_, Jul 17 2019 %o A026855 (Sage) a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^4/(16*x^3*(sqrt(1-4*x) -x))).series(x, 30).coefficients(x, sparse=False); a[1:] # _G. C. Greubel_, Jul 17 2019 %Y A026855 Cf. A000108, A026736. %K A026855 nonn %O A026855 1,2 %A A026855 _Clark Kimberling_