cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026905 Partial sums of the partition numbers A000041 of the positive integers.

This page as a plain text file.
%I A026905 #69 Nov 23 2024 16:50:03
%S A026905 1,3,6,11,18,29,44,66,96,138,194,271,372,507,683,914,1211,1596,2086,
%T A026905 2713,3505,4507,5762,7337,9295,11731,14741,18459,23024,28628,35470,
%U A026905 43819,53962,66272,81155,99132,120769,146784,177969,215307,259890,313064,376325,451500
%N A026905 Partial sums of the partition numbers A000041 of the positive integers.
%C A026905 Equivalently, a(n) = number of sums S of positive integers satisfying S <= n.
%C A026905 Equivalently, first differences give A000041. - _Jacques ALARDET_, Aug 04 2008, Aug 15 2008
%C A026905 For the partial sums of the partitions numbers of nonnegative integers A001477 see A000070. - _Omar E. Pol_, Nov 12 2011
%C A026905 Also number of parts in all regions of n that contain 1 as a part (Cf. A206437). - _Omar E. Pol_, Mar 11 2012
%C A026905 Also the number of graph minors of the path graph P_n (not counting the null graph). - _Eric W. Weisstein_, Apr 29 2022
%H A026905 Riccardo Aragona, Roberto Civino, and Norberto Gavioli, <a href="https://doi.org/10.1007/s10801-024-01318-x">An ultimately periodic chain in the integral Lie ring of partitions</a>, J. Algebr. Comb. (2024). See p. 11.
%H A026905 Thomas M. A. Fink, Emmanuel Barillot, and Sebastian E. Ahnert, <a href="https://web.archive.org/web/20210427075631/http://www.tcm.phy.cam.ac.uk/~tmf20/PUBLICATIONS/dynamics_motifs.pdf">Dynamics of network motifs</a>, 2006.
%H A026905 Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See p. 23.
%H A026905 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=800">Encyclopedia of Combinatorial Structures 800</a>
%F A026905 a(n) = A000070(n) - 1, n >= 1.
%F A026905 a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n))). - _Vaclav Kotesovec_, Oct 25 2016
%F A026905 G.f.: -1/(1 - x) + (1/(1 - x))*Product_{k>=1} 1/(1 - x^k). - _Ilya Gutkovskiy_, Dec 25 2016
%p A026905 a:= n-> add(combinat[numbpart](k), k=1..n): seq(a(n), n=1..44); # _Zerinvary Lajos_, Jun 01 2008
%t A026905 Table[ Sum[ PartitionsP[k], {k, 1, n}], {n, 1, 45}]
%t A026905 (* or: *)
%t A026905 PartitionsP[Range[45]] // Accumulate (* _Jean-François Alcover_, Jun 19 2019 *)
%t A026905 CoefficientList[Series[(QPochhammer[x] - 1)/(x (x - 1) QPochhammer[x]), {x, 0, 20}], x] (* _Eric W. Weisstein_, Apr 29 2022 *)
%o A026905 (PARI) a(n) = sum(k=1, n, numbpart(k)); \\ _Michel Marcus_, Jul 19 2023
%o A026905 (Python)
%o A026905 from sympy import partition
%o A026905 def A026905(n): return sum(partition(k) for k in range(1,n+1)) # _Chai Wah Wu_, Nov 23 2024
%Y A026905 Cf. A000041, A000070, A001477, A026906, A206437.
%Y A026905 Rows sums of A133737, A137633, A137679.
%K A026905 nonn
%O A026905 1,2
%A A026905 _Clark Kimberling_
%E A026905 Edited by _N. J. A. Sloane_, Jun 20 2015
%E A026905 Name clarified by _Omar E. Pol_, Apr 30 2022