This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026923 #25 Sep 07 2019 01:38:40 %S A026923 0,0,1,0,1,1,3,2,4,3,6,5,8,7,11,9,13,12,17,15,20,18,24,22,28,26,33,30, %T A026923 37,35,43,40,48,45,54,51,60,57,67,63,73,70,81,77,88,84,96,92,104,100, %U A026923 113,108,121,117,131 %N A026923 Number of partitions of n into an odd number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an even number of parts, each <= 3. %H A026923 R. J. Mathar, <a href="/A026923/b026923.txt">Table of n, a(n) for n = 1..1000</a> %F A026923 a(n) + A026927(n) = A069905(n). - _R. J. Mathar_, Aug 22 2019 %F A026923 Conjectures from _Colin Barker_, Sep 01 2019: (Start) %F A026923 G.f.: x^3*(1 - x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)). %F A026923 a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11. %F A026923 (End) %e A026923 Figure 1: The partitions of n into 3 parts for n = 3, 4, ... %e A026923 1+1+8 %e A026923 1+1+7 1+2+7 %e A026923 1+2+6 1+3+6 %e A026923 1+1+6 1+3+5 1+4+5 %e A026923 1+1+5 1+2+5 1+4+4 2+2+6 %e A026923 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5 %e A026923 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4 %e A026923 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ... %e A026923 ----------------------------------------------------------------------- %e A026923 n | 3 4 5 6 7 8 9 10 ... %e A026923 ----------------------------------------------------------------------- %e A026923 a(n) | 1 0 1 1 3 2 4 3 ... %e A026923 ----------------------------------------------------------------------- %e A026923 - _Wesley Ivan Hurt_, Sep 06 2019 %p A026923 A026923 := proc(n) %p A026923 local a,p1,p2,p3 ; %p A026923 a := 0 ; %p A026923 for p1 from 0 to n do %p A026923 for p2 from 0 to (n-p1)/2 do %p A026923 p3 := (n-p1-2*p2)/3 ; %p A026923 if type(p3,'integer') and p3 >=1 and type(p1+p2+p3,'odd') then %p A026923 a := a+1 ; %p A026923 end if: %p A026923 end do: %p A026923 end do: %p A026923 a; %p A026923 end proc: # _R. J. Mathar_, Aug 22 2019 %Y A026923 3rd column of A026920. %Y A026923 Cf. A026927, A309683, A309684, A309685, A309686, A309687, A309688, A309689, A309690, A309692, A309694. %K A026923 nonn %O A026923 1,7 %A A026923 _Clark Kimberling_