This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026927 #21 Sep 07 2019 01:38:44 %S A026927 0,0,0,1,1,2,1,3,3,5,4,7,6,9,8,12,11,15,13,18,17,22,20,26,24,30,28,35, %T A026927 33,40,37,45,43,51,48,57,54,63,60,70,67,77,73,84,81,92,88,100,96,108, %U A026927 104,117 %N A026927 Number of partitions of n into an even number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an odd number of parts, each <= 3. %F A026927 a(n) + A026923(n) = A069905(n). - _R. J. Mathar_, Aug 22 2019 %F A026927 Conjectures from _Colin Barker_, Sep 01 2019: (Start) %F A026927 G.f.: x^4*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)). %F A026927 a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11. %F A026927 (End) %e A026927 Figure 1: The partitions of n into 3 parts for n = 3, 4, ... %e A026927 1+1+8 %e A026927 1+1+7 1+2+7 %e A026927 1+2+6 1+3+6 %e A026927 1+1+6 1+3+5 1+4+5 %e A026927 1+1+5 1+2+5 1+4+4 2+2+6 %e A026927 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5 %e A026927 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4 %e A026927 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ... %e A026927 ----------------------------------------------------------------------- %e A026927 n | 3 4 5 6 7 8 9 10 ... %e A026927 ----------------------------------------------------------------------- %e A026927 a(n) | 0 1 1 2 1 3 3 5 ... %e A026927 ----------------------------------------------------------------------- %Y A026927 3rd column of A026921. %Y A026927 Cf. A026923, A309683, A309684, A309685, A309686, A309687, A309688, A309689, A309690, A309692, A309694. %K A026927 nonn %O A026927 1,6 %A A026927 _Clark Kimberling_