cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026935 a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A008288.

This page as a plain text file.
%I A026935 #16 May 25 2021 08:05:33
%S A026935 1,10,75,500,3149,19214,115031,680424,3992921,23305234,135514019,
%T A026935 785892316,4549048229,26295995926,151857925039,876366840784,
%U A026935 5055045581745,29148894792730,168045778127355,968679251764676,5583525654107645,32183666525389086,185514611981021959
%N A026935 a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A008288.
%H A026935 G. C. Greubel, <a href="/A026935/b026935.txt">Table of n, a(n) for n = 2..500</a>
%t A026935 A008288[n_, k_]:= Binomial[n, k]*Hypergeometric2F1[-k, k-n, -n, -1];
%t A026935 A026935[n_]:= Sum[A008288[n, k]*A008288[n, k+2], {k, 0, n-2}];
%t A026935 Table[A026935[n], {n, 2, 40}] (* _G. C. Greubel_, May 25 2021 *)
%o A026935 (Sage)
%o A026935 @CachedFunction
%o A026935 def A008288(n,k): return sum(binomial(n-j, j)*binomial(n-2*j, k-j) for j in (0..k))
%o A026935 def A026935(n): return sum(A008288(n, k)*A008288(n, k+2) for k in (0..n-2))
%o A026935 [A026935(n) for n in (2..40)] # _G. C. Greubel_, May 25 2021
%Y A026935 Cf. A008288.
%K A026935 nonn
%O A026935 2,2
%A A026935 _Clark Kimberling_
%E A026935 More terms from _Sean A. Irvine_, Oct 17 2019