This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026964 #12 Jun 23 2024 18:37:06 %S A026964 1,12,77,434,1978,8830,37409,156474,644305,2632506,10684360,43166246, %T A026964 173768764,697596990,2794438513,11174809302,44626341136,178018744896, %U A026964 709505830530,2825762505810,11247704919634,44749537493028,177970696795672,707580176408854,2812524327414647 %N A026964 a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026626. %H A026964 G. C. Greubel, <a href="/A026964/b026964.txt">Table of n, a(n) for n = 3..1000</a> %t A026964 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[3*n/2], T[n-1,k-1] +T[n-1,k]]]; (* T = A026626 *) %t A026964 A262964[n_]:= Sum[T[n,k]*T[n,k+3], {k,0,n-3}]; %t A026964 Table[A262964[n], {n,3,40}] (* _G. C. Greubel_, Jun 23 2024 *) %o A026964 (SageMath) %o A026964 @CachedFunction %o A026964 def T(n, k): # T = A026626 %o A026964 if (k==0 or k==n): return 1 %o A026964 elif (k==1 or k==n-1): return int(3*n//2) %o A026964 else: return T(n-1, k-1) + T(n-1, k) %o A026964 def A262964(n): return sum( T(n,k)*T(n,k+3) for k in range(n-2)) %o A026964 [A262964(n) for n in range(3,41)] # _G. C. Greubel_, Jun 23 2024 %Y A026964 Cf. A026626, A026627, A026628, A026629, A026630, A026631, A026632. %Y A026964 Cf. A026633, A026634, A026635, A026636, A026961, A026962, A026963. %Y A026964 Cf. A026965. %K A026964 nonn %O A026964 3,2 %A A026964 _Clark Kimberling_ %E A026964 More terms from _Sean A. Irvine_, Oct 20 2019